
Stephen Hendrick, The Linux Foundation
Ashwin Ramaswami, The Linux Foundation

Foreword by Stephen Augustus, Cisco

December 2023

In partnership with

Maintainer
Perspectives on

Open Source
Software Security

Survey-based Insights
from Maintainers

Regarding How They Address
Best Practices for Secure

Software Development

One-quarter (27%)
of maintainers are
responsible for
defining OSS
security policy.

69% of OSS
contributors want

defined best practices
for secure software

development.

56% of projects
support
reproducible
builds.

By the end of 2023, 72%
of maintainers and core
contributors feel that
OSS will be secure.

30% of maintainers are
responsible for
implementing OSS
security policy.

49% of OSS
contributors want
employer incentives
for OSS contributions.

The #1 reason for
maintaining
OSS projects is the
enjoyment of
learning.

Reducing developer
fatigue through
automation
is the #2 approach to
improve security across
the OSS supply chain.

39% of maintainers
and core contributors
manually review
source code.

Project documentation
is widespread but

not ubiquitous:
87% of projects responded

that they provide basic
documentation.

Making security tools
more intelligent

is the #1 approach to
improve security across

the OSS supply chain.

The #1 approach to
evaluating the security of
OSS packages in use are
SCA and SAST
security tools.

Copyright © 2023 The Linux Foundation | December 2023. This report is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International Public License

Maintainer Perspectives on Open Source Software Security

https://www.linuxfoundation.org/
https://creativecommons.org/licenses/by-nd/4.0/deed.en

Contents

Foreword ��� 4

Introduction ���5

Comparing perspectives of open source maintainers to other open source software contributors ������ 6

Maintainer perspectives on secure software development ��� 15

Open source contributor perspectives on how to improve software security and sustainability ����������23

Conclusions ���28

Methodology �� 30

Acknowledgments ���32

About the authors ���32

Foreword

Over the past few years, we have become increasingly more accus
tomed to conversations around software supply chain security.

If you’re about to take a deep dive into these insights presented
by LF Research, in partnership with the Open Source Security
Foundation (OpenSSF), you’re no doubt familiar with the principle
that open source software permeates the vast majority of the
software that is built today. With that in mind, it stands to reason
that secure software development is a practice that must include
considerations around how to cultivate secure open source
software projects and communities.

I am not an expert in secure software development. I do,
however, hold a few perspectives in my daily work: that of a
consumer, a contributor, a maintainer, and a sponsor of open
source projects.

As consumers, we are concerned with the validity and viability
of a project. Does this project do what I need and expect it to
do? Is it easy to deploy? Is it written in a language that my team
can readily reason about?

As contributors, maybe we are drawn to a project because of
our work commitments or maybe our personal interests in the
problem space and execution. With this lens, we want to under
stand the needs of the project, how its community works, and
how to become a valued and effective member of that ecosystem.

As sponsors, we trend towards investing in areas that have
material impact for our businesses. We should endeavor to
support projects not with mandates that only give attention

to areas of development that are important to us, but through
balanced initiatives that affect the longterm sustainability of
the project, its personnel, and the wider ecosystem.

With these lenses in mind, we as maintainers have a multi
directional role. We’re dedicated to making our projects a
delight to consume. We want to engender a genuine interest in
contributing learnings back to the project. We yearn to create an
environment in which contributors are supported in becoming
maintainers. Finally, we hope that all of what we’ve built and
sustained is an attractive enough value proposition for sponsors
to support.

To generalize what I stated before, we are not all experts in secure
software development. From this maintainer’s perspective, as
the report from LF Research highlights, we need to be invested
in a few critical areas: educating ourselves on secure software
development practices, implementing and leveraging tools that
can allow us to more readily produce secure code, and creating
feedback loops with other open source practitioners to discuss,
improve, and evangelize secure best practices.

In contemplating these maintainer perspectives, I encourage
you to examine how this research can catalyze your own role in
securing open source software.

After all, open source is a group activity.

STEPHEN AUGUSTUS

HEAD OF OPEN SOURCE, CISCO

4MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Introduction

More than 90% of organizations worldwide use open source
software (OSS).1 OSS is present in the entire software stack, from
operating systems to infrastructure, middleware, data management,
services, frameworks, components, and applications.

OSS maintainers are responsible for managing the development
and ongoing upkeep of open source components. Maintainers
occupy a crucial role in the OSS ecosystem in steering the direction
of OSS projects and ensuring their health and sustainability. Open
source relies on its people: its communities of maintainers and
other contributors who do tasks ranging from designing features
to writing documentation, fixing bugs, and reviewing code. These
tasks are critical to supporting and securing the open source
security ecosystem. But to be effective and sustainable in the long
run, such efforts must ultimately support and empower maintain
ers, not add additional burdens. Tools, practices, and initiatives
around security must be easy to adopt and help empower main
tainers in the open source community.

To this end, Linux Foundation Research has surveyed the security
of the OSS supply chain. The survey focuses on understanding
perspectives on OSS security and the uptake and adoption of se
curity best practices by maintainers, core contributors, end users,
and other members of the OSS ecosystem. This survey included
questions about secure software development that were answered
specifically by OSS maintainers and core contributors only. The
survey took place in March 2022, with some survey results pub
lished in June 2022. This paper presents previously unpublished
information on the adoption of best practices for secure software
development from that survey. For more information about this
research approach and sample demographics, see the methodol
ogy section of this paper.

Secure development best practices is an area where the Linux
Foundation, and specifically the Open Source Security Foundation
(OpenSSF), have established best practices for secure software
development—Best Practices Badge (bestpractices.dev) &
Scorecard (securityscorecards.dev)—and provide free training
and certification in secure software development (Developing
Secure Software (LFD121)—Linux Foundation— Training).

Security challenges

Addressing the security of OSS components requires a different
approach from traditional approaches to securing proprietary,
vendorsupported software. The more loosely structured and
communityfocused nature of typical OSS development presents
a different environment for addressing software security where
there are a few large visible projects (such as the Linux kernel
and Kubernetes) and many small projects define the distribution
of OSS projects. Smaller projects typically have fewer contributors
and resources and are therefore more likely to adopt a minimalist
approach to development and security.

The tremendous benefits and prevalence of OSS in organizational
software, combined with vulnerabilities in the OSS software
supply chain, put us at a crossroads. Organizations and companies
that use OSS need to become more aware of what dependencies
they are using, proactively and regularly monitoring all components
for usability, trustworthiness, and vulnerabilities. Ultimately, OSS
is a twoway street. Consumers of OSS must contribute back
to the OSS communities to ensure the health and viability of the
dependencies they rely on. Merely using OSS without contributing
back is not enough if its users want to ensure that the software
will meet their needs over time and requires them to (a) incorporate
the nature of OSS dependencies into standard cybersecurity
and development practices and (b) contribute back to the OSS
communities that organizations rely on.

1. Adrienn Lawson and

Stephen Hendrick, World

of Open Source: Global

Spotlight 2023 (San

Francisco, The Linux

Foundation, 2023), 9.

5MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

https://www.bestpractices.dev/en
https://securityscorecards.dev/
https://training.linuxfoundation.org/training/developing-secure-software-lfd121/
https://training.linuxfoundation.org/training/developing-secure-software-lfd121/

Comparing perspectives of open source maintainers
to other open source software contributors

Maintainers and core contributors represent 36% of open source contributors

Our open source supply chain survey included 441 respondents
that selfidentified as OSS contributors. The distribution of these
OSS contributors shown in Figure 1 is as follows: maintainers
(20%), core contributors (16%), occasional contributors (49%),
onetime contributors (12%), and nondevelopment contributors
(3%). Definitions for each of these roles are as follows:

•  Maintainer: A software maintainer or package maintainer
is the final decision maker over all or portions of source
code that goes into a build or release. Maintainers would
likely also identify as a subset of core contributors.

•  Core contributor: A core contributor may have been part
of the project since inception or joined later, regularly
participates in major discussions about project direction,
and has significant ongoing roles in the work, possibly
including accepting patches to the code base. A project
community may refer to core contributors as “Committers.”

•  Occasional contributor: An occasional contributor would
not normally participate in ongoing or weekly project
discussions but occasionally provide contributions over
longer time periods.

•  One-time contributor: A onetime contributor is someone
who provides a specific set of suggestions or contributions
and then exits involvement once their work is done. These
are sometimes called “driveby commits.”

•  Non-developmental contributors: These are other IT
staff with a strong focus on software security.

We will use Figure 1 to segment OSS contributors into two cate
gories: maintainers and core contributors (36%) and other OSS
contributors [occasional contributors, onetime contributors, and
nondevelopment contributors (64%)]. These two OSS segments
represent those contributors with a high level of OSS contribution
or involvement (maintainers and core contributors) and those
with a passing or lowlevel contribution or involvement (other
OSS contributors). Throughout this report, we will compare the
actions, beliefs, and perceptions of these two segments to see
where they are the same and where they are different.

Maintainer Core
contributor

Occasional
contributor

One-time
contributor

12%

Non-development
contributor

3%

49%

16%
20%

FIGURE 1

Which role in open source
software development
describes you the best?
(select one)

2022 OpenSSF supply chain
security survey,

Q14, sample size = 441

6MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Maintainers and core contributors
have an experience advantage

While the demographics across the maintainers and core contri
butors segment compared to the other OSS contributors
segment are similar across most metrics (age, employment,
geography, company size, industry, role, and area of responsibility),
the one metric where there is a difference is years of experience.
Figure 2 shows that 66% of maintainers and core contributors
have six or more years of experience compared to 47% for other
OSS contributors.

The share of maintainers and core contributors who are non
developers is also very low at 3% compared to other OSS
contributors at 18%. This is understandable because the role of
maintainers and core contributors is often to contribute source
code, and even maintainers who do not directly write code must
make decisions about what contributions should receive approval
(including code) and to document or inform the community about
the new changes. It would be hard for a maintainer to understand
what changes to code should receive acceptance without
understanding code.

Open source contributors are concerned about open source software security,
but not as much as you might expect

When asked about how secure their process is for developing or
using OSS today, Figure 3 shows that most maintainers and
core contributors (62%) and other OSS contributors (63%) view
the process for developing or using OSS code as secure. This
contrasts with the 19% of OSS contributors who view this process
as insecure and the 17 to 19% of OSS contributors who remain
neutral. The data in this report delivers a more nuanced picture

of software development security and points to the methods
used by OSS contributors to address software security and the
differences between the actions and expectations of these two
respondent segments: maintainers and core contributors and
other OSS contributors.

FIGURE 2

How long have you
developing open source
software? (select one)
segmented by type of
OSS contributor

Other OSS contributorsMaintainers or core contributors

Less than 6 years 6 or more years Non-developer

3%

18%

47%

66%

31%
35%

2022 OpenSSF supply chain
security survey,

Q13 x Q14a, sample size = 441

7MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Open source contributors have questionable expectations
about how open source security will improve

Given the baseline of 62% to 63% of OSS contributors who
stated in Figure 3 that OSS software in development or use was
secure in 2022, it is remarkable to see the optimism that OSS
contributors have in how the state of OSS would change by the
end of 2022. Figure 4 shows that 68% of maintainers and core
contributors believe that OSS software in development or use

would qualify as secure by the end of 2022 (up from 62% in Figure
3), and just 8% believe it would be insecure (down from 19% in
Figure 3). This leaves 24% who are neutral (neither secure nor
insecure). Maintainers and core contributors only expect modest
gains in software security by the end of 2022, but the significant
decline in maintainers and core contributors who feel that OSS

FIGURE 3

How secure is your process for developing or using open source software today? (select one) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q17 x Q14a, sample size = 348

Maintainers or core contributors

Other OSS contributors

Secure Neutral Insecure

41% 26% 33%

38% 21% 41%

62% 19% 19%

63% 17% 19%

FIGURE 4

How do you see the security of open source software you develop or use changing in 2022?
(select one) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q18 x Q14a, sample size = 348

Maintainers or core contributors

Other OSS contributors

Secure Neutral Insecure

15%

68% 24% 8%

80% 5%

8MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

software remains insecure drops dramatically from 19% early in
2022 to 8% by the end of 2022.

The drift for other OSS contributors is even more extreme. Figure
4 shows that 80% of other OSS contributors believe that OSS
software in development or use would qualify as secure by the
end of 2022 (up from 63% in Figure 3), and just 5% believe it would
be insecure (down from 19% in Figure 3).

We then asked yet another followup question regarding how the
security of OSS would evolve in 2023. This is where the responses
diverged even more. Figure 5 shows that 72% of maintainers and
core contributors believed that OSS would be secure, which is up
four points from the late 2022 (Figure 4) value and up 10 points
from early 2022 (Figure 3). This increase from 62% in early 2022
to 72% by the end of 2023 suggests that maintainers expect to see
a moderate improvement over this twoyear period. The following
developments can explain this type of improvement over two years:

•  Improved security testing tools, including static application
security testing (SAST) and dynamic application security
testing (DAST) accompanied by machine learning (ML) to
detect security issues

•  Higher levels of community involvement

•  Better dependency management

•  An increased focus on DevSecOps

•  Government involvement and regulation

•  More emphasis on secure software development in
developer training

However, other OSS contributors appear convinced that these
types of software security improvements will have an even
more significant impact. Figure 5 shows that 87% of other OSS
contributors feel that OSS use and development will be secure
by the end of 2023, up seven percentage points from the end
of 2022 (Figure 4) and up 24 points from early 2022 (Figure
3). This data shows a widening gap between the perspectives
of maintainers and core contributors compared to other OSS

FIGURE 5

How do you see the security of open source software you develop or use changing in 2023?
(select one) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q19 x Q14a, sample size = 348

Maintainers or core contributors

Other OSS contributors

Secure Neutral Insecure

10%

72% 19% 9%

87% 3%

9MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

contributors. Our discussions with maintainers suggest that these
dramatically differing perspectives are due to experience. Because
other OSS contributors are only participating peripherally in main
taining OSS, they are likely to oversimplify the required steps to
improve OSS security. When your involvement in an activity is not
deep, it often appears to be much easier than it is, which is an
example of the DunningKruger effect.

Open source contributors are involved
in setting open source security policy

Although Figure 6 reflects the perspective of OSS contributors,
it showcases the high level of involvement that OSS contributors
have in setting OSS security policy. Overall, Figure 6 shows that
the primary approach to defining OSS security policy within the
organization is the responsibility of the CISO and / or security
team. However, 27% of OSS maintainers (and 12% of other OSS
contribu tors) identify maintainers as having responsibility for
setting OSS security policy. This is likely to be the position that
many organizations take where there isn’t a security team, CISO,
or open source program office (OSPO) claiming the role.

Figure 6 also shows that involving multiple IT teams to define OSS
security policy is sometimes a solution. The reason for this is that
cybersecurity needs are farreaching, involving developers, network
security, risk management, compliance, and more. Leveraging
multiple teams can bring diverse experiences to bear and enable
the inclusion of more aspects of cybersecurity in the policy defined.

FIGURE 6

Who is responsible for defining your OSS security policy?
(select one) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q21 x Q14a, sample size = 348

Security team and/or CISO

Open source maintainers

Multiple teams

Developer or core contributor

No one

Operations or Site Reliability
Engineers (SREs)

Contributors from other teams

Don’t know or not sure

Total

Maintainers or core contributors

Other OSS contributors

26%
23%

28%

18%
27%

12%

16%
13%

18%

15%
18%

13%

11%
9%

12%

2%
2%
2%

2%
5%

4%

8%
5%

10%

10MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

FIGURE 7

Who is primarily responsible for Implementing
security across development and usage activities?
(select one) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q22 x Q14a, sample size = 348

Developer or core contributor

Security team and/or CISO

Multiple teams

Open source maintainers

No one

Operations or Site
Reliability Engineers (SREs)

Contributors from other teams

Don’t know or not sure

26%
27%

26%

20%
13%

23%

18%
13%

20%

16%
30%

8%

7%
5%

7%

2%
2%
2%

4%
5%

5%

7%
5%

8%

Total

Maintainers or core contributors

Other OSS contributors

Open source contributors and developers are
all tasked with implementing security policy

Figure 7 shows that when we asked who was primarily responsible
for implementing security policy, developers and core contributors
were the overall leading response (all OSS contributors) at 26%.
Security teams and / or the CISO (20%), multiple teams (18%), and
open source maintainers (16%) reinforce the role that developers
have while also identifying the importance of security teams in
implementing security policy.

What is somewhat surprising is the difference in beliefs that
emerge between maintainers and core contributors and other
OSS contributors in three of the responses in Figure 7: security
teams and / or CISO, multiple teams, and open source maintainers.
Each segment’s experience and frame of reference appear to
impact the disparity between segments. However, we assess
that cybersecurity policy implementation takes a village because
of its wide scope, and while it is natural to expect the involvement
of maintainers and core contributors, this will also include other
developers and security teams.

Maintainers demonstrate the importance of
manual inspection to address cybersecurity

The most common approach to checking the security of OSS
packages that are and will be in use is to utilize tools to examine
the source code and investigate its activity. Figure 8 shows that
46% of OSS contributors use tools to introspect source code; 45%
also check to make sure that the project has an active developer
community; and 38% look at the frequency of releases and
commits. It is also important to note the consistency of both OSS
contributor segments in their support for these leading approaches
to source code introspection.

11MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Using tools to examine source code is the leading approach for a
good reason. Developers utilize tools because they have limited
time. Tools provide a faster way to introspect code. Machine
learning is likely to eventually improve the capability of security
tools, but the consensus seems to be that there is still no substi
tute for manual inspection.

There is one significant difference in Figure 8, which is that 39%
of maintainers and core contributors manually review and
inspect source code. The primary role of maintainers and core
contributors is to improve component functionality; however,
you can’t modify code unless you have a good idea about how it
works. Therefore, maintainers do need to manually review code
to understand the delivery of its functionality. Addressing the
security of OSS components may be a cumbersome side effect
of maintaining code, but manual code review facilitates it. So,
maintainers do prioritize manual code reviews and inspections
to improve the functionality and quality of the code they change
or add, but they also use this opportunity to identify and
address security concerns.

Security tools use is correlated
with the value provided

Figure 9 shows that 50% of all OSS contributors use software
composition analysis (SCA) tools. SCA tools are very effective at
identifying license compliance issues and common vulnerabilities
and exposures (CVEs) across OSS components in use by your
organization. SCA tools are not difficult to integrate into a CI / CD
pipeline, which has helped with their adoption.

Figure 9 shows the use of SAST tools at 34% and infrastructure as
code (IaC) tools at 33%, defining a 2nd tranche of tool use by OSS
contributors. The common use of SAST tools, much like SCA tools,
in software development is to test code during development,
before code is committed, during code reviews, after code is comm

FIGURE 8

How do you check the security of the
open source packages that you use?
(select all that apply) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q28 x Q14a, sample size 348, valid cases = 348, total mentions = 1,070

We use tools to examine its
source code

We check that the project has
an active community

We look at the frequency of
releases / commits / etc.

We use a tool like Snyk Advisor,
Libraries.io, or similar tools to

search for open source packages

We use the information in the
registry or package

We look at the repository data
or package download statistics

We manually review/
inspect its source code

We check that the project has a
responsible disclosure policy

(such as a SECURITY .md)

We ask others if they
believe the security of the

project is adequate

We don’t check it

Don’t know or not sure

46%
44%

47%

45%
46%

44%

38%
37%

39%

37%
35%

38%

34%
31%

35%

31%
39%

26%

34%
32%

32%

18%
21%

16%

7%

8%
5%

14%
10%

12%

9%
7%

10% Total

Maintainers or core contributors

Other OSS contributors

12MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

itted, during continuous integration, and before deployment.
Finding security vulnerabilities—such as finding bugs—should
happen as early in software development as possible. Vulnerabil
ities and bugs become exponentially more expensive to fix when
found later during development. As SAST tools become more
intelligent, it would be reassuring to see their adoption increase
significantly because of their role as an automated primary defense
against security threats.

Finally, IaC tools, which 33% of OSS contributors use, are very
effective at automating key software development processes.
Reducing manual touch points across CI / CD activities is an
important way to reduce the exposure of missioncritical
activities such as provisioning, management, and deployment
through automation. We do note that just 21% of maintainers
and core contributors use IaC tools compared to 40% of other
OSS contributors. While we do know that maintainers and core
contributors are responsible for releasing code for eventual use
in a production environment, the role of other OSS contributors
is somewhat more ambiguous. What we do know from the data
is that other OSS contributors participate more in using IaC
tools (40% vs. 21%), web application scanners (35% vs. 16%), and
IaC scanners (16% vs. 9%). What we can say is that other OSS
contributors are on average more committed tool users. This
may be because they have less experience and / or because
their roles involve them in more activities across the software
development life cycle (SDLC).

FIGURE 9

What security tools do you regularly use when
developing open source software?
(select all that apply) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q29 x Q14a, sample size 348, valid cases = 348, total mentions = 813

Software Composition
Analysis (SCA) tools

Static Application Security
Testing (SAST) tools

Infrastructure as
Code (IaC) tools

Web Application Scanners

Security test cases in
software quality testing

Fuzz Testing Tools

Infrastructure as Code scanners

Threat modeling tools

Cloud Security Posture
Mgmt (CSPM) tools

Other

Don’t know or not sure

50%
52%

49%

34%
35%

33%

33%
21%

40%

28%
16%

35%

25%
25%
25%

14%
9%

16%

16%
18%

17%

9%
7%

10%

13%

13%
13%

5%
8%

7%

4%
8%

2% Total

Maintainers or core contributors

Other OSS contributors

13MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

How open source contributors
find security vulnerabilities

No one mechanism guarantees to find all vulnerabilities. There
fore, discovering vulnerabilities requires that OSS contributors
use a variety of approaches, as Figure 10 demonstrates. They
commonly use security tools such as SAST (36%) and SCA (33%),
and, in some cases, integrated development environments (IDEs)
with SAST extensions (29%), as well as command line tools (28%).
However, identifying vulnerabilities during code reviews by OSS
contributors (32%) is common and is a primary way for maintainers
and core contributors (36%) to find vulnerabilities. We should not
underestimate the importance of this approach because it can
identify issues including and beyond the scope of just vulnerabil
ities, despite being more laborintensive.

SCA tools are a primary way for OSS contributors and users to
find known vulnerabilities in reused components. SAST tools can
identify unknown vulnerabilities. This is why the use of both SCA
and SAST tools is so important.

Figure 10 shows that 36% of OSS contributors use SAST tools, and
33% use SCA tools. Overall, 32% report that they find vulnerabilities
during peer review, and once again, maintainers and core
contributors (36%) rely more on this approach than other OSS
contributors do (29%).

FIGURE 10

How do you find out about security vulnerabilities in your code?
(select all that apply) segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q30 x Q14a, sample size = 348, valid cases = 348, total mentions = 892

We find them in CI when
a SAST tool runs

We find them when using
SCA tools or services

They get identified
during peer review

We find them in our IDE
using an extension for

static code analysis

We use a command-line
tool to detect them

Publication in the National
Vulnerability Database

Through an external
security audit

We find out when they are
exploited in the wild

Bug bounties help
disclose them

We don’t

Other (please specify)

Don’t know or not sure

36%
38%

35%

33%
32%

34%

32%
36%

29%

29%
28%

29%

28%
30%

27%

23%
22%

24%

28%
27%

27%

18%
20%

18%

3%

2%
5%

13%
12%

12%

9%
6%

11%

5%

5%
5%

Total

Maintainers or core contributors

Other OSS contributors

14MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Maintainer perspectives on secure software development

The OSS security survey included a series of questions for only
OSS maintainers and core contributors, which allowed them to
explain how they performed their maintainer and development
responsibilities. As we saw earlier, Figure 1 shows that 36% of
OSS contributors are maintainers or core contributors (159
respondents). Of these maintainers and core contributors, 72
were willing to answer questions about the primary open
source project they participated in and how they performed
development and maintainer responsibilities.

The survey asked a series of seven questions spanning 52 responses
about maintainer or core contributor adoption of secure software
development best practices. The seven questions we asked
comprised OSS development activities selected from project phases,
including project management, source code management, the
build process, software quality assurance (SQA), software security,
security testing, and secure coding.

For each of the 52 best practices (secure software development
activities), respondents were able to choose from five stages
of adoption:

1.  In use now

2. Planned for 2022 or 2023

3. No plans to use

4. Not applicable

5. Don’t know or not sure

Please note that if you regard the logistics curve as a proxy for
market adoption of a particular product, technology, or best
practice, consider 85 to 90% as the “maximum target adoption.”
The reason for this is that best practices are not always applicable

to all maintainers and core contributors. There is always a
percent age that doesn’t know or is not sure if the development
processes in place require or support the best practices.
Consequently, any combination of current and planned use that
approaches or exceeds this maximum target adoption range is
an excellent finding.

Most maintainers and core contributors
support basic requirements for
OSS use and contribution

We started with the adoption of basic best practices. Figure 11
shows that activities that are now widely in use include ensuring a
project has basic documentation (87%), posting the terms of its
license (84%), actively maintaining the project (83%), describing
what the project does on the project website (80%), and making
sure the project enables people to discuss changes and issues (79%).

However, Figure 11 also shows that while 87% of maintainers and
core contributors said their project provides basic documentation
for the software produced, only 68% of these respondents said
their project explains contribution guidelines. Fewer maintainers
expressed confidence that the project could continue releasing
versions if the lead maintainer stepped down. In our qualitative
interviews, maintainers noted the fact that sustainability is also a
component of software supply chain security. What happens if a
maintainer steps down?

A positive characteristic of Figure 11 is that the high percentage
of adoption (in use now) diminishes the percentage of maintainers
and core contributors who are in a different stage of adoption.
Generally, as the number of maintainers or core contributors who
use a best practice increases, there will be a decrease in planned

15MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

adoption or other adoption alternatives by maintainers and
core contributors. We do see this pattern of involvement
across the first six best practices. Equally disappointing is the
elevated level of maintainers and core contributors in the last

three activities who have no plans to address how the project
explains contribution guidelines (17%), how to identify bugs and
contribute to the software (15%), or what happens when the lead
maintainer steps down (15%).

How maintainers approach source code management and change control

Source code management and change control are fundamental
for the effective management, collaboration, stability, and growth
of open source projects. They provide the infrastructure and
processes necessary for open source communities to collaborate
and establish development processes.

Figure 12 shows that 72 to 84% of maintainers and core contrib
utors follow key source code management and change control
best practices; however, vulnerability identification and
remediation reporting lag considerably, with maintainer and core
contributor adoption ranging from 48 to 63%. In our interviews

FIGURE 11

Does this project support the following basic best practices?
2022 OpenSSF supply chain security survey, Q38, sample size = 72, DKNS excluded from the analysis

The project provides basic documentation
for the software protocol

This project posts the terms of its license

This project is heavily maintained

This project website describes what the project does

The project enables people to discuss changes
and issues

Data access to the project content
supports HTTPS using TLS

The project explains contribution guidelines

The project website explains how to obtain, identify
bugs, and contribute to the software

The project can continue releasing versions of the
lead maintainer steps down

In use now Planned 2022/2023 No plans to use Not applicable

87% 6%

6%84% 4%

83% 10%

1%80% 10%

4%79% 11%

6%76%

68%

69%

67%

4%

6%

7%

9%

6%

7%

7%

9%

9%

10%

17%

15%

15%

8%

7%

9%

3%

16MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

with maintainers, some mentioned that they may also get the
word out about publiclyknown vulnerabilities through more
informal channels such as Twitter, email, or Slack, but there
should always be a system of record around the management

of vulnerabilities by the project, which needs to involve CVE
registries and additional informal channels for identifying
other vulnerabilities.

Support for build process best practices shows a combination of strengths and weaknesses

This section concerns best practices around the build process.
Figure 13 shows that the majority of maintainers and core
contributors have adopted best practices to address common
build activities such as having build definitions stored in a version
control system (VCS) (78%), having all build steps as part of

a build script (75%), running the build service in an isolated
environment (69%), having the build service run as an ephemeral
environment (63%), having dependencies listed in a computer
readable way (63%), using secure design principles (60%), and
supporting reproducible builds (56%).

FIGURE 12

Does this project support the following source code management and change control best practices?
2022 OpenSSF supply chain security survey, Q39, sample size = 72, DKNS excluded from the analysis

Each release has a unique identifier

The project provides a process
to submit bug reports

Revisions and change history
 are preserved indefinitely

The project maintains a publicly available archive for
bug reports and responses

The project uses an issue tracker to manage bugs

Human readable release notes discussing
major changes are provided

The project has a process for
reporting vulnerabilities on the site

If the project supports private vulnerability
reporting, then the method for doing so is explained

Release notes identify every run-time CVE
remediated (not including dependencies)

84% 9%

3%81% 12%

80% 9%

4%79% 12%

4%78% 10%

10%72%

63%

52%

48%

6%

4%

9%

4%

7%

4%

6%

18%

17%

13%

17%

18%

27%

13%

11%

8%

1%

3%

In use now Planned 2022/2023 No plans to use Not applicable

17MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Although most developers followed many of the basic build best
practices, more complex features, such as verifying provenance
(36%) and cryptographically signing releases (attestation) (20%),
struggled to garner significant adoption. Part of the problem may
be a lack of common understanding of this terminology. In one of
our interviews, a maintainer noted that even though many main
tainers may not have heard of provenance or attestation, they do
know how to describe the problem.

Figure 13 also shows that 24% of maintainers have no plans to use
build services that cannot falsify metadata (provenance) or view

provenance as not applicable. Similarly, 42% of maintainers and
core contributors have no plans to have releases cryptographically
signed or view this type of attestation as not applicable. These
percentages are admittedly large, but there are instances where
a maintainer is primarily maintaining a project for their own use,
and trust is not an issue. Other users of such projects who have
trust in the maintainer may not feel strongly about provenance
or attestation. Finally, many OSS projects do not build the
software directly at all; they only release source code. If an OSS
project doesn’t have a build service, then securing them and their
results is irrelevant.

FIGURE 13

Does this project support the following build best practices?
2022 OpenSSF supply chain security survey, Q41, sample size = 72, DKNS excluded from the analysis

78% 9%

6%75% 7%

69% 9%

10%63% 16%

11%63% 19%

16%60%

56%

36%

20%

7%

12%

12%

11%

8%

12%

13%

29%

17%

12%

20%

24%

42%

11%

12%

22%

6%

All build steps are defined as part of a build script

The build service runs in an environment
isolated from other builds

The build service runs as an ephemeral environment

The release lists direct dependencies in
 a computer-readable way

The project implements secure design principles

The project enables reproducible builds

Build service users cannot falsify software metadata

Releases are cryptographically signed

9%

The build definition and config is
stored in a version control system and

executed by the build service

In use now Planned 2022/2023 No plans to use Not applicable

18MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Software quality best practices are well supported by maintainers and core contributors

Software quality has always been an important goal in some soft
ware development processes. As mentioned earlier, the sooner
you can find a bug in the SDLC, the cheaper it is to resolve. Figure
14 shows the extent to which maintainers and core contributors
engage in a selection of SQA best practices. The results are positive,
especially for the more conventional approaches to SQA, including
those shown in Figure 14. If we consider adoption to be a range
from “in use now” to “in use now plus planned,” adoption of the
more conventional SQA best practices is very good for public test
suites (74 to 83%), providing a working build system (70 to 80%),
requirements for unit and integration testing (73 to 81%), compiler
flags for code quality warnings (68 to 75%), and extending test
suites as functionality expands (68 to 82%). This bodes well for
efforts such as the OpenSSF Compiler Options Hardening Guide

for C and C++, which provides extensive guidance when developing
software in those languages.

The outliers in Figure 14 include negative tests (verifying that the
software does not do something it should not do); many maintainers
and core contributors have adopted (64%) this, but there are few
plans to add them to projects that do not already do it. Minimum
requirements for code coverage are modestly adopted, but with
planned adoption reflecting 50% growth, this best practice is gaining
traction. Code coverage measures the amount of code tested (e.g.,
the percentage of statements and / or percentage of branches),
and it can provide quantitative evidence when the testing is poor
(if many code statements or branches are completely untested,
the test process will necessarily miss many problems).

FIGURE 14

Does this project support the following quality best practices?
2022 OpenSSF supply chain security survey, Q42, sample size = 72, DKNS excluded from the analysis

74% 10%

10%70% 10%

73% 17%

7%68% 15%

14%68% 12%

3%64%

43%

7%

10%

3%

10%

6%

11%

10%

21%

27%21%

9%

For software requiring builds, the project
provides a working build system

Does your project require unit testing
and integration testing

The project has at least one publicly
released automated test suite

The project enables one or more computer warning
flags or uses a linter tool to find code quality warnings

Test suites are extended to cover major
new functionality as it is added

The project test suite should include negative tests that
verify the software does not do something it should not do

Code coverage is measured,
and there are minimum requirements

8%

In use now Planned 2022/2023 No plans to use Not applicable

19MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++
https://best.openssf.org/Compiler-Hardening-Guides/Compiler-Options-Hardening-Guide-for-C-and-C++

Security in an area where more attention is required

Security is an important element of software development these
days. The attack on SolarWinds’ Orion showed us that attackers
can be quite sophisticated and brazen in their efforts to eavesdrop,
control, or disrupt missioncritical systems, including the subver
sion of software build processes. For this reason, we looked at
best practices to address the basic elements of software security
in Figure 15.

Even considering the combination of maintainers and core
contributors that have already adopted or are planning to adopt

each of these security best practices, the results leave room for
improvement. The highest threshold reached in Figure 15 was 75%
for projects that have at least one developer skilled in secure
software implementation. Today, most maintainers and core
contributors barely adopt the use of security tools to prevent
leakage of private credentials (55 to 66%) and fix vulnerabilities
within 60 days after reporting (53 to 65%). However, in defense
of maintainers, we can say that not all CVEs need fixing in a timely
way, but the medium or highimportance CVEs should and prob
ably do get more immediate attention.

FIGURE 15

Does this project support the following security best practices?
2022 OpenSSF supply chain security survey, Q43, sample size = 72, DKNS excluded from the analysis

69% 21%

8%67% 18%

61% 16%

11%55% 15%

12%53% 25%

10%46%

47%

39%

33%

8%

7%

20%

19%

10%

14%

21%

25%

18%

31%

21%

25%

36%

12%

11%

13%

2%

The project has at least one primary developer
skilled in secure software implementation

Software produced by the project uses only cryptographic protocols /
algorithms that are publicly published and reviewed by experts

At least one developer is familiar with
vulnerability categories and their mitigation

Security tools and controls are used to
prevent the leakage of private credentials

The project fixes all vulnerabilities within 60 days after being reported

Project developers use multi-factor
authentication (MFA) for modifying source code

The project mitigates injection attacks by
practicing sanitization and filtering out user input

The project must use a delivery system that
counters man-in-the-middle (MITM) attacks

Project developers use multi-factor authentication
(MFA) for modifying registry content

3%

In use now Planned 2022/2023 No plans to use Not applicable

20MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Best practices such as using multifactor authentication (MFA) for
modifying source code (46 to 56%) and using MFA when modifying
registry content (33 to 46%) seem like areas where there is significant
room for improvement. In the first part of 2022, various forges and
package repositories began to move toward requiring MFA in certain
cases. At the time, many expressed their excitement to see this,

but some did resist it, perhaps seeing it as an unnecessary burden.
The OpenSSF even posted that it expressly supports movements
toward MFA and explained why this was becoming necessary to
counter today’s attackers. Since the time of this survey, MFA use has
increased. We expect it will substantially increase further beginning
in 2024 when GitHub begins requiring 2FA to contribute code.

Security tool demonstrates maintainer leanings toward manual reviews

We have already seen that OSS contributors often use SCA and
SAST tools (Figure 9). At the same time, other OSS contributors
have a stronger affinity for other security testing tools. Maintainers
and core contributors rely more on manual code reviews. We
attribute this emphasis on manual code reviews because of the
need by maintainers and core contributors to gain a comprehensive
understanding of how to modify, improve, and address cyber
security in their work.

Figure 16 confirms the focus that maintainers and core contributors
have on resolving medium or high CVEs in a timely way (55 to 67%),
the use of SCA tools (42 to 61%), and the use of SAST tools (41 to
51%). However, beyond the support that maintainers and core
contributors derive from CSA and SAST tools, there is a limit to
other tool use. We don’t think this is necessarily an issue because
investing the time to do manual code reviews supplemented by
using key tools appears to us to be an acceptable approach to
addressing this aspect of cybersecurity.

FIGURE 16

Does this project support the following security testing best practices?
2022 OpenSSF supply chain security survey, Q44, sample size = 72, DKNS excluded from the analysis

55% 23%

19%42% 27%

41% 39%

12%20% 59%

12%19% 50%

9%

12%

10%

8%

19%

12%

Software Composition Analysis (SCA) to understand
license compliance, dependencies, and vulnerabilities

Static Application Security Testing (SAST)
of any major releases

Medium or higher CVEs discovered
are remediated in a timely way

Fuzzing testing of any major release

Dynamic application security testing or
web application scanning of any major release

10%

In use now Planned 2022/2023 No plans to use Not applicable

21MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

https://openssf.org/blog/2022/07/20/openssf-supports-movements-toward-multi-factor-authentication/
https://openssf.org/blog/2022/07/20/openssf-supports-movements-toward-multi-factor-authentication/
https://github.blog/2022-05-04-software-security-starts-with-the-developer-securing-developer-accounts-with-2fa/

Support for secure coding principles varies by ease of administration

The Linux Foundation and OpenSSF have placed a significant
emphasis on best practices for secure software development.
Secure software development processes include secure software
implementation, aka secure coding. While other processes are
important when developing secure software (such as secure design
and verification), it’s vitally important to implement secure soft
ware. Figure 17 shows that maintainers and core contributors do
largely embrace the selected secure coding practices identified,
but there is still room for improvement.

Best practices that many maintainers and core contributors support
include projects having contributors from two different organiza
tions (57 to 61%), the ability to declare and pin dependencies (61 to
69%), and the use of branch protection (56 to 68%). Note that having

“contributors from two different organizations” is not completely
under the control of one organization; they can take steps to encour
age it, but in the end, another organization must decide to join.

Secure coding practices that do not have a high level of support
include requiring at least a twoperson code review (36 to 46%) and
having the project pass security tests before merging code (37 to
54%). The twoperson code review is a worthy target, but its need is
somewhat contingent upon the availability of others and the scope
/ complexity of the code being merged. A 2023 analysis by Josh
Bressers found that over half of all NPM releases have just one
person maintaining them. A twoperson code review can’t happen
when the project only has one person. Avoiding security testing
before merging code appears to be a bad idea. However, project
characteristics or constraints can often interfere. Not all maintainers
or core contributors may have the skill and expertise in security
testing to conduct security testing, the scale and scope of a project
may not necessitate rigorous security testing, some projects rely on
postmerge reviews instead of premerge reviews, continuous deliv
ery needs can take precedence, and maintainer wisdom regarding
what needs testing (and when) is important.

FIGURE 17

Does this project support the following secure source coding best practices?
2022 OpenSSF supply chain security survey, Q45, sample size = 72, DKNS excluded from the analysis

57% 31%

61% 22%

56% 22%

10%36% 41%

17%37% 38%

7%

9%

10%

13%

8%

4%

The project is able to declare and pin dependencies

The project uses branch protection

The project has contributors
from at least two different organizations

The project requires at least a two-person
code review before code is merged

The project must pass security tests
 in order to be able to merge code

12%

8%

In use now Planned 2022/2023 No plans to use Not applicable

22MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

https://anchore.com/blog/open-source-is-bigger-than-you-imagine/
https://anchore.com/blog/open-source-is-bigger-than-you-imagine/

Open source contributor perspectives on how to
improve software security and sustainability

Improving software security is an important and ongoing activity
that is top of mind for the IT industry and governments. In this
section of the report, we will look at OSS contributor perspectives
on ways to improve the software supply chain, secure software
development, and OSS sustainability.

Open source contributor guidance on improving
open source software supply chain security

Figure 18 shows that the leading approaches to improving OSS
supply chain security include making software security tools
more intelligent (58%), increasing automation (54%), following
best practices for secure software development (52%), and
increasing OSS employer incentives (49%), security audits (47%),
and peer review of source code (41%).

At 58% overall, OSS contributors widely use security tools, especially
SCA and SAST tools. Other OSS contributors favor IaC and DAST
tools. Security tools provide many benefits, including automatic
detection of vulnerabilities, license compliance, continuous
integration capabilities to prevent vulnerability introductions,
better code quality, early detection and remediation of bugs,
and making it easier for contributors to identify, prioritize, and
resolve security issues.

More automation to eliminate pathways that could compromise
security (54%) reduces time to market and developer fatigue and
eliminates manual touch points, thereby reducing the available
attack surface for bad actors. Automation is also a way to empower
maintainers and core contributors without adding more burden
to them. One respondent noted that more intelligent tooling and
automation, as well as standardization, can solve the problem

of transparency. Rather than making people change their workflow,
providing security automatically or “by default” would be preferable.
However, other respondents noted that there is only so much
automated tools can do, and sometimes there are deeper problems
to investigate. Moreover, there is a lot of work we need to do to make
sure tools can speak to each other very well, such as integrating
SBOM information and making it so easy to use a tool that users
will always use it.

Following comprehensive best practices for secure software
development (52%) confirms the value of having a trusted and
published collection of best practices for addressing software
security across the SDLC. The Linux Foundation and OpenSSF
have already developed a comprehensive list of best practices
for secure software development, and in the introduction of this
report, we have identified where to find these best practices and
the free training course on secure software development.

Increased incentives by employers (49%) can mean enabling
employees to work on OSS projects important to the organization
during working hours or providing additional incentives related to
maintainership or community involvement. This is an important
path to sustainability and one that helps organizations “give back”
to OSS (often the OSS they vitally depend on) and is an important
way to perpetuate / expand the OSS value proposition. Finally,
respondents noted that employers and companies could play a big
role in resourcing improvements for OSS. One respondent suggest
ed having enduser enterprises that can benefit from open source
fund maintainers. Since it seems that there is often no business
case to pay maintainers for their support, OSPOs at companies and
organizations can play a big role in thinking at a strategic level and
supporting the OSS dependencies their organizations rely on.

23MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Add intelligence to software security tools

More automation to eliminate pathways to compromise
security and reduce developer fatigue

Comprehensive best practices / certification for
secure software development

Increased incentives by employers to contribute to
open source projects

Security audits

Peer review of source code

Vulnerability reporting system that is low-touch and low-latency

Required use of MFA by developers and releasers

Identification of mission-critical software
to be hardened against attack

Cryptographic signatures

Use standardization to reduce complexity and difficulty in
addressing OSS security

Verification through use of reproducible builds

Use of memory-safe programming languages

Use of SBOMs

Globally unique identification of specific software
components / releases

Other (please specify)

Don’t know or not sure

58%
46%

62%

54%
53%

55%

52%
49%

Total Maintainers or core contributors Other OSS contributors

54%

49%
46%

50%

47%
45%

48%

36%
41%

34%

45%
40%

41%

35%
41%

33%

30%

31%
27%

34%
34%

34%

31%
35%

30%

29%

29%
31%

28%

26%
34%

27%

26%
28%

20%

21%
19%

5%

5%
7%

4%

3%
7%

FIGURE 18

Which of the following activities are
important to improving the security of

the open source software supply chain?
(select all that apply)

segmented by type of OSS contributor
2022 OpenSSF supply chain security survey, Q48 x Q14a,

sample size = 283, valid cases = 283, total mentions = 1,645

24MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

FIGURE 19

What are some of the ways that IT industry organizations could
improve the security of developing open source software?
(select all that apply) segmented by type of OSS contributor

2022 OpenSSF supply chain security survey, Q50 x Q14a, sample size = 271, valid cases = 283, total mentions = 821

Define best practices for secure
software development

Provide tools for remediating security vulnerabilities
of the top 500 open source components

Provide more training in secure and memory-safe
programming for the broader OSS community

Provide funds to support remediating security
vulnerabilities of the top 500 open source components

More formal processes for evaluating the security of
incoming software

Provide funds to more nascent projects
that show significant potential

Other (please specify)

Don’t know or not sure

69%
58%

73%

59%
53%

62%

52%
51%

53%

51%
51%
51%

38%
28%

42%

3%
4%

2%

28%
26%

27%

4%
4%
4%

Total

Maintainers or core contributors

Other OSS contributors

Based on past Linux Foundation research, security audits have
often been addressed informally and sporadically, if at all. It is
therefore exciting to see in Figure 18 that security audits (47%)
are gaining visibility. They are a useful way to evaluate the
security of key components as well as a key process for securing
these components.

Finally, source code peer reviews (41%) are important to OSS
contributors because taking the time to understand component
functionality and security is the most effective way to ensure
that code modifications, changes, and additions are performed
carefully and securely, resulting in a highquality component

Open source contributor guidance on
improving open source development security

When we narrow the focus of the question to how to improve
the development of OSS across the supply chain, we see some
overlapping trends and some additional findings. Figure 19 shows
that the leading guidance from OSS contributors is to define best
practices for secure software development (69%). The best practice
definitions for secure development and training courses appear
to be resources that many OSS contributors are not aware of.
See the introduction of this report for links to both of these
resources. Many respondents also noted that IT organizations
could also work on defining best practices; however, some
resp ondents expressed concerns that guidelines developed by
enterprises may get too long or cumbersome, and maintainers
may not read or implement them. Another respondent noted
that it would be useful to get bigger organizations together to
talk about what has worked and what hasn’t when it comes to
securing their projects.

A second tranche of responses in Figure 19 includes providing
tools to remediate vulnerabilities in the top 500 OSS components
(59%), more training in secure and memorysafe programming

25MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

(52%), and funding to remediate vulnerabilities in the top 500
OSS components (51%).

Project AlphaOmega is an initiative within the OpenSSF aimed at
identifying and securing the most critical open source projects.
The alpha part of the project is to proactively secure the most
widely used and critical open source projects. See Alpha-Omega—
Open Source Security Foundation (openssf.org) for more
information on this project.

More training in memorysafe programming languages is also a
great way to improve OSS security. Rust (ownership model) and
Swift (automatic reference counting) take rigorous approaches
to memory management and are “safer” languages based on
their memory management techniques as compared to C or C++,
while still providing good performance. Most popular languages,
including Go, Java, JavaScript, C#, and Python, provide memory
safety in part by including automatic garbage collection; this
abstracts away much of the complexity of memory management
to make it easier for developers. The choice of language depends
on the specific project requirements such as performance needs,
ecosystem considerations, and developer expertise. Selecting
a memorysafe programming language automatically prevents
many vulnerabilities that plague those developing in languages
such as C and C++.

Open source contributor guidance on
improving open source sustainability

Figure 20 shows that personal and altruistic beliefs drive OSS
contributors. On a personal level, OSS contributors enjoy
learning (72%). Contributing provides them with a way to fulfill
creative, challenge, and enjoyment needs (52%). On an altruistic
level, OSS contributors use OSS and feel they should contribute
something back (59%) and believe OSS involvement is a way to
help others (46%).

FIGURE 20

What drives your motivation for maintaining and contributing to OSS
projects and components?
(select all that apply) segmented by type of OSS contributor

2022 OpenSSF supply chain security survey, Q51 x Q14a, sample size = 271, valid cases = 283, total mentions = 1,088

I enjoy learning

Since I use open source
software, I feel I should

contribute something back

Contributing allows me to fulfill
a need for creative, challenging,

and/or enjoyable work

I enjoy helping others

I believe my open source
contributions will advance

my career

I enjoy working with my peers
and my community

My employer allows some of
my paid work hours to

contribute to open source

I value the recognition
of my peers

My employers pays
for participation in

open source events

My employer pays for open
source training

I am paid (independent of my
employer) to develop open

source software

Other (please specify)

Don’t know or not sure

72%
59%

76%

59%
55%

60%

52%
50%

52%

46%
41%

48%

38%
41%

37%

30%
45%

24%

41%
35%

36%

23%
34%

19%

7%

7%
8%

31%
17%

21%

12%
15%

11%

6%

5%
9%

1%

Total

Maintainers or core contributors

Other OSS contributors

26MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

https://openssf.org/community/alpha-omega/
https://openssf.org/community/alpha-omega/

Maintainers and core contributors also emphasize (relative to
other OSS contributors) that OSS contributions will advance their
careers (41%). They find enjoyment in working with their peers
and the OSS community (41%), and employers often do allow
work on OSS during working hours (45%).

Solving the problem of open source sustainability is complex and
requires a multidimensional approach. Since altruistic motives
often drive open source projects, balancing the need for ongoing
maintenance and development with limited resources can be
challenging. Corporate stewardship and partnerships, as well as
funding and financial support by employers, are a new and welcome

phenomenon, although they cannot be at the expense of
compromising the satisfaction that OSS contributors gain from
their involvement in OSS and with the community. Support for
community engagement and growth is an important objective so
that a path exists from occasional OSS contributor to maintainer.
Building a healthy community culture with recognition, rewards,
and an established code of conduct ensures community partici
pation is a supportive experience. Finally, obtaining a balance
between addressing these personal, organizational, and cultural
needs while continuing to evolve and advance the process model
and improving OSS security and quality in a way that encourages
rather than discourages involvement is absolutely paramount.

27MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Conclusions

As we work on efforts to improve the security of the OSS ecosystem,
we should empower OSS maintainers to build security into their
products and build processes, automating rote tasks and reducing
the effort needed by maintainers. We hope this survey has helped
shed light on what practices have worked and where we still need
to go in the future. Key conclusions based on the data analyzed in
this report are as follows.

Keep the open source maintainer
perspective in mind when thinking
about open source sustainability

Software development is a human endeavor. Even when AI / ML is
used to help generate software, humans must define what is to be
done, as well as review and fix the results. Software development
is also about problemsolving, where the developer or maintainer
must solve a functional problem that is often bounded by con straints,
such as security. To solve problems, an OSS contributor (be they a
maintainer, core contributor, occasional contributor, or onetime
contributor) should understand the existing code to some extent
before making any decisions and taking action. As projects grow
in size, understanding the code becomes more difficult because
of the code’s increased size and complexity. Manual code reviews
are therefore an important element of what maintainers and core
contributors do. A positive finding from this survey was the high
priority that OSS maintainers and core contributors attach to
code reviews and peer reviews. The importance of these activities
to maintainers and core contributors was greater than some
might have expected. Another way to say this is that any efforts to
improve security must include these voices in the room; security
work must be a collective effort and prioritize collaboration.

OSS cybersecurity is an important issue that the OSS community
must successfully address. Gaps or lapses in security that lead
to embarrassment, financial harm, or unauthorized data exposures
can do more than just give OSS a black eye. Past research shows
that OSS’s image benefits from its communitydriven development
approach, which provides an opportunity for the security of OSS
components to be better than proprietary code. The OSS
community must live up to this expectation and find ways to
address security needs without doing irreparable harm to the
community culture.

The use of security tooling and automation is
key to addressing open source cybersecurity

Throughout this report, security tool use by OSS contributors
has been an important ingredient in addressing cybersecurity
needs. SAST and SCA tools have found favor with many OSS
contributors, but some OSS contributors are open to also using
other security tools such as DAST and IaC. The use of all four of
these functional tool categories should provide an excellent
foundation from which to address security testing and automation.

Tools can reduce the burden on individual developers and
help achieve ecosystemwide success. Tooling can improve
both transparency and security, but it should not be a burden
on maintainers; rather, tooling should work with developers’
existing workflows and provide security features by default. We
also need more investments in interoperability to make different
tools work together, and we must be realistic and understand
that tooling and automation cannot solve all problems.

28MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Education and best practices are an important part of the solution

A significant portion of this report highlights the best practices
that maintainers and core contributors are following. Figures
11 to 17 showcase maintainer use and planned implementation
of best practices for secure software development and indicate
that some best practices have widespread adoption. Many
others are likely to have widespread adoption by the end of
2023. While maintainers and core contributors are not strangers
to best practices, when we asked about how to improve OSS
supply chain security (Figure 18) and the security of software
development (Figure 19), support for best practices was always
a leading response. This suggests that there may be a knowledge
gap with many OSS contributors not being aware that the Linux
Foundation has already defined a comprehensive list of best
practices for secure software development across the SDLC as
well as a training course in secure software development. For
links to these resources, see the introduction in this report.
This suggests a need for more marketing to help them become
aware of them.

As Robert Scholte noted, “You don’t know what you don’t know.”
More broadly, there are tools and improvements that users and
maintainers can use, but they need to be aware of them and
their use first. The significant number of “Don’t know or not sure”
(DKNS) responses to our surveys also indicate that education
about the security tools available is a good first step. Finally,
according to Brian Demers, the current undergraduate level of
education for software development—in computer science (CS),
software engineering (SwE), and similar—does not touch on secu
rity, which is a big problem. The basics of how to develop secure
software should be part of every undergraduate curriculum for
CS, SwE, and similar fields.

29MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Methodology

About this study

A web survey conducted by Linux Foundation Research and its
partners in March 2022 served as the basis for this study. The
survey’s goal was to provide a global perspective on the state
of open source supply chain security. Published in June 2022,
an initial report, Addressing Cybersecurity Challenges in Open
Source Software, presented some of the key findings from the
survey. However, this initial report did not include the entire
section of the survey that collected data from maintainers and
core contributors on the adoption of best practices for secure
software development because of resource, length, and time
constraints. This additional report, Maintainer Perspectives on
Open Source Software Security, published in December 2023,
provides this best practice data and includes additional context
based on a segmentation of OSS contributors. The two reports
do not overlap except for the demographic data.

In this section, we present the study methodology and the
demographics of the respondents. From a research perspective,
it was important to counter sample bias and ensure high data
quality. We handled the elimination of sample bias by sourcing
our usable sample from the Linux Foundation membership,
partner communities, social media, and a thirdparty panel
provider. We addressed data quality through extensive pre
screening, screening criteria, and data quality checks to ensure
that respondents had sufficient open source familiarity and
professional experience to answer questions accurately on
behalf of the organization they worked for.

The Open Source Supply Chain Security Survey comprised 55
questions and focused on the following:

•  General software security

•  OSS software security (includes questions on the adoption
of best practices for secure software development)

•  How to improve OSS software security

We collected survey data from enduser organizations, IT vendors
and service providers, and nonprofit, academic, or government
organizations. Respondents spanned many vertical industries
and companies of all sizes, and we collected data from geographies
that included the Americas, Europe, and Asia Pacific.

We conducted the 2022 Open Source Supply Chain Security Survey
in March 2022. While this data is aging, it still provides useful
insights into the challenges that maintainers face and the decisions
that they make regarding how to address secure software
development. The derivation of the sample size discussed in this
report is as follows:

1. This survey had 1,175 respondents who started the survey.

2. Screening criteria (Q13,5,6) removed 437 respondents,
leaving 738.

3. Of these 738, only 539 completed the demographic questions
and began answering supply chain security questions.

4. Of these 539, 441 selfidentified as either an open source
maintainer, core contributor, occasional contributor,
onetime contributor, or other contributor.

5. Of these 441, just 159 respondents selfidentified as either
an open source maintainer or core contributor, and 282
were other OSS contributors (occasional, onetime, or
other contributors)

30MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

6. Of these 159, only 72 elected to answer specific
questions regarding how they addressed secure
software development.

Although there was a requirement for respondents to answer
nearly all questions in the survey, there were times when the
respondent was unable to answer a question because it was
outside the scope of their role or experience. For this reason,
we added a DKNS response to the list of responses for nearly all
questions. However, this creates a challenge regarding how we
should interpret the DKNS responses.

One approach is to treat a DKNS just like any other response
so that we know the percentage of respondents that answered
DKNS to a question. The advantage of this approach is that it
reports the exact distribution of data collected. The challenge
with this approach is that it can distort the distribution of valid
responses, i.e., responses collected where respondents could
answer the question.

Some of the analyses in this report exclude DKNS responses. This
is a decision made where (a) it is important to understand the

distribution of responses excluding DKNS and (b) we can classify
the DKNS data as either missing at random or missing completely
at random. Excluding DKNS data from a question does not change
the distribution of counts for the other responses, but it does
change the size of the denominator used to calculate the percent
of responses across the remaining responses. This has the effect
of proportionally increasing the percentage values of the valid
responses. Where we have elected to exclude DKNS data, the foot
note for the figure includes the phrase “DKNS responses excluded.”

The percentage values in this report may not total exactly 100%
due to rounding.

Data�World access

Linux Foundation Research makes each of its empirical project
datasets available on Data.World. Included in this project
dataset are the survey instrument, raw survey data, screening
and filtering criteria, and frequency charts for each question in
the survey. You can find Linux Foundation research datasets,
including this project (2022 Open Source Software Supply Chain
Security Survey) at data.world/thelinuxfoundation.

31MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

https://data.world/thelinuxfoundation

Acknowledgments

We thank all the participants of the survey for sharing their insights and
experience on the state of secure software development. Special thanks to
peer reviewers, Linux Foundation colleagues, and an array of maintainers
for their perspectives and involvement in the various stages of this research:
Omkhar Arasaratnam, Stephen Augustus, Brian Behlendorf, Hilary Carter,
Brian Demers, Adrienn Lawson, Kim Lewandowski, Oleg Nenashev, Nick
O’Leary, Jed Salazar, Robert Scholte, Daniel Stenberg, Kate Stewart, Liran Tal,
Harry Toor, Dana Wang, David A. Wheeler, and Adolfo Garcia Vettia.

About the authors

STEPHEN HENDRICK is vice president of research at the Linux Foundation,
where he is the principal investigator on a variety of research projects core to
the Linux Foundation’s understanding of how OSS is an engine of innovation
for producers and consumers of IT. Steve specializes in primary research
techniques developed over 30 years as a software industry analyst. Steve is
a subject matter expert in application development and deployment topics,
including DevOps, application management, and decision analytics. Steve brings
experience in a variety of quantitative and qualitative research techniques that
enable deep insight into market dynamics and has pioneered research across
many application development and deployment domains. Steve has authored
over 1,000 publications and provided market guidance through syndicated
research and custom consulting to the world’s leading software vendors and
highprofile startups.

ASHWIN RAMASWAMI is an open source maintainer, developer, and policy
researcher. He also works on web application architecture and cybersecurity
and research and writing with the Linux Foundation. He holds a B.S. in
computer science from Stanford University and is pursuing a J.D. degree at
Georgetown Law.

32MAINTAINER PERSPECTIVES ON OPEN SOURCE SOFTWARE SECURITY

Founded in 2021, Linux Foundation Research explores the growing scale of open source
collaboration, providing insight into emerging technology trends, best practices, and the
global impact of open source projects. Through leveraging project databases and networks,
and a commitment to best practices in quantitative and qualitative methodologies, Linux
Foundation Research is creating the go-to library for open source insights for the benefit of
organizations the world over.

Copyright © 2023 The Linux Foundation

This report is licensed under the Creative Commons Attribution-NoDerivatives
4.0 International Public License.

To reference this work, please cite as follows: Stephen Hendrick and Ashwin Ramaswami,
“Maintainer Perspectives on Open Source Software Security: Survey-based Insights from
Maintainers Regarding How They Address Best Practices for Secure Software Development,”
foreword by Stephen Augustus, The Linux Foundation, December 2023.

https://www.linuxfoundation.org/research/
https://www.linuxfoundation.org/
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://twitter.com/linuxfoundation
https://www.facebook.com/TheLinuxFoundation
https://www.linkedin.com/company/the-linux-foundation/
https://www.youtube.com/user/TheLinuxFoundation
https://github.com/LF-Engineering

	_heading=h.2et92p0
	_heading=h.tyjcwt
	_heading=h.3dy6vkm
	_heading=h.17dp8vu
	_heading=h.3rdcrjn
	_heading=h.26in1rg
	_heading=h.lnxbz9
	_heading=h.35nkun2
	_heading=h.1ksv4uv
	_heading=h.44sinio
	_heading=h.2jxsxqh
	_heading=h.z337ya
	_heading=h.3j2qqm3
	_heading=h.1y810tw
	_heading=h.4i7ojhp
	_heading=h.2xcytpi
	_heading=h.1ci93xb
	_heading=h.3whwml4
	_heading=h.2bn6wsx
	_heading=h.qsh70q
	_heading=h.3as4poj
	_heading=h.1pxezwc
	_heading=h.49x2ik5
	_heading=h.2p2csry
	_heading=h.147n2zr
	_heading=h.23ckvvd
	_heading=h.ihv636
	_heading=h.32hioqz
	_heading=h.1hmsyys
	_heading=h.41mghml
	Foreword
	Introduction
	Comparing perspectives of open source maintainers to other open source software contributors
	Maintainer perspectives on secure software development
	Open source contributor perspectives on how to improve software security and sustainability
	Conclusions
	Methodology
	Acknowledgments
	About the authors

