
PRACTICAL

GPL
COMPLIANCE

A GUIDE FOR STARTUPS, SMALL
BUSINESSES AND ENGINEERS

ARMIJN HEMEL, MSC AND SHANE COUGHLAN

PRACTICAL

GPL
COMPLIANCE

A GUIDE FOR STARTUPS, SMALL
BUSINESSES AND ENGINEERS

ARMIJN HEMEL, MSC AND SHANE COUGHLAN



Copyright © 2017 Linux Foundation
All rights reserved. This book or any portion thereof may not be reproduced or 
used in any manner whatsoever without the express written permission of the 
publisher except for the use of brief quotations in a book review and certain 
other noncommercial uses permitted by copyright law.

Printed in the United States of America

First Edition, 2017

ISBN: 978-0-9989078-0-2

1 Letterman Drive
Building D
Suite D4700
San Francisco CA 94129
Phone/Fax: +1 415 723 9709
https://linuxfoundation.org



About the Authors

Shane Coughlan
Shane Coughlan is an expert in communi-
cation, security, and business development. 
His professional accomplishments include 
spearheading the licensing team that  
elevated Open Invention Network into the 
largest patent non-aggression community in 

history, establishing the leading professional network of open source 
legal experts, and aligning stakeholders to launch both the first law 
journal and the first law book dedicated to open source. He currently 
leads the OpenChain community as Program Manager.

Shane has extensive knowledge of open source governance, internal 
process development, supply chain management, and community 
building. His experience includes engagement with the enterprise, 
embedded, mobile, and automotive industries. 

Armijn Hemel
Armijn Hemel is the owner of Tjaldur Software 
Governance Solutions. He is an active re- 
searcher of and internationally recognized 
expert in open source license compliance 
and supply chain management. He studied 
computer science at Utrecht University in 

The Netherlands, where he pioneered reproducible builds with 
NixOS. In the past he served on the board of NLUUG and was a 
member of the coreteam of gpl-violations.org. Currently he is a 
board member at NixOS Foundation.



To Kate, for tirelessly driving the  
compliance community forward
ARMIJN HEMEL

To Lana, who has a sense of curiosity 
that spans the whole world
SHANE COUGHLAN



“Don’t Panic.”
 
DOUGLAS ADAMS



Introduction

Practical GPL Compliance is a compliance guide for startups, 
small businesses, and engineers, particularly focused on complying 
with the versions of the GNU General Public License (GPL). It is 
designed for engineers shipping products with GPL-licensed 
software included (e.g., consumer electronics, drones, IoT devices). 
Its goal is to provide practical information to quickly address 
common issues. It is intended to be useful for solving real-world 
challenges rather than providing perfection in an imperfect world 
and to serve as the basis for empowering a compliance engineer 
or compliance team to get their job done as efficiently as possible. 
Hopefully, the practices laid out in this guide will assist you in 
complying with other open source license terms as well.

This book begins by introducing the tools used to practice GPL 
compliance. It then expands on the goals of our approach, and 
follows with an explanation of how to accomplish those goals. 
It continues with a “checklist” of pitfalls frequently encountered 
by compliance engineers and a list of steps that can be applied 
in common situations when releasing a product or product family. 
It ends with some handy flowcharts to visualize key approaches 
or best practices.

If you have a physical copy of this book, it should end up as a 
battered, dog-eared reference text lurking beside your keyboard. 
If you have a digital copy, it should be something that appears 
in your favorites list or your desktop. Compliance engineering is 
not something easily memorized and finished. It is a process 
— an approach backed by tools and knowledge of best practices 
— and we do best in this field when we continually refresh and 
hone our skills.

Thankfully, compliance engineering is no longer a “black box” 
mastered by only a few. Today, with texts like this or Open Source 



Compliance in the Enterprise1, every engineer can support the 
excellent use of third-party code. Licenses like the GPL, once 
regarded as challenging to fully adhere to, can become 
understandable and addressable by large and small entities alike.

Practical GPL Compliance and Open Source Compliance in the 
Enterprise work together to help engineers, startups, small 
companies, and enterprises master open source license compliance. 
However, they do not exist in isolation, and you can find more 
materials via the Linux Foundation Open Compliance Program at 
https://compliance.linuxfoundation.org. To get you started, 
Appendix 1 contains an overview of other publications available 
and a list of useful compliance templates. 

You may also be interested in Appendix 2: Compliance Standards, 
Appendix 3: Professional Networks, and Appendix 4: Tools and 
Infrastructure. There is a wealth of free resources available via 
The Linux Foundation and from other parties to ensure that 
knowledge of best practices and processes is readily available 
to you. Or…, just go to the next page and get started right away 
with our cheat sheet.

1. http://go.linuxfoundation.org/open-source-compliance-ebook

https://compliance.linuxfoundation.org
http://go.linuxfoundation.org/open-source-compliance-ebook


The GPL Compliance Engineer Task-Based 
Cheat Sheet
No time to read a book? Welcome to our world. We suggest 
copying this page, pinning it to your desk, and using it as a shortcut 
for getting things done.

What you need to do	 2

The tools you can use	 6 

How to deal with binary code	 8

Find problem binaries	 10

Rebuilding a binary	 14

Finding incorrectly licensed code	 19

Common pitfalls	 22

Releasing software	 37

Buying software 	 42

Building a FOSS code center	 48

Get checklists to help	 52

Get flowcharts to help	 54



Table of Contents

Chapter 1: Approach	 1

Context	 2

Compliance Requirements	 3

Compliance Goals	 3

Toolbox	 6

Analysis of Binary Files	 8

Source Code Analysis and Rebuild	 10

Chapter 2: Common Pitfalls	 22

Pitfall #1: Toolchain	 23

Pitfall #2: Android	 24

Pitfall #3: “Out of tree” Linux Kernel Modules	 27

Pitfall #4: Rescue Mode/Install Mode Systems	 30

Pitfall #5: Bootloader	 31

Pitfall #6: Missing Build System	 31

Pitfall #7: Incorrect or Missing BusyBox Configuration Files	 32

Pitfall #8: Incorrect or Missing Linux Kernel Configuration Files	 33

Pitfall #9: Not Including the Version Number in Firmware and	 35  
Source Code Archive Names

 Chapter 3: Scenarios for Releasing Software	 37

Scenario #1: Software On A Device/Offline Distribution	 38

Scenario #2: Providing A Manual Download From Website 	 39 



Scenario #3: Providing An Automatic Download/	 40 
Over The Air

Scenario #4: Field Engineer Applied Updates	 41 

Chapter 4: Scenarios for Buying Software	 42

Context	 43

Scenario #1: SupplyChain Solutions For SoC Vendors	 43

Scenario #2: Supply Chain Solutions For ODMs 	 45

Scenario #3: Supply Chain Solutions For Others	 46 

 Chapter 5: Building a FOSS Code Center	 48

Context	 49

“FOSS Code Center” As A Requirement	 49

Keep Firmware And Source Code Together	 50

 Chapter 6: Tracking Tasks and Processes	 51

Checklists	 52

Flowcharts	 54 
 
Appendices	 63

Appendix 1: The Open Compliance Program	 64

Appendix 2: Compliance Standards	 68

Appendix 3: Professional Networks	 69

Appendix 4: Tools & Infrastraucture	 70 



CHAPTER 1:

Approach
“In theory there is no difference  
between theory and practice. In  
practice there is.”
YOGI BERRA



Practical GPL Compliance: Approach	 2

Context

Compliance engineering consists of a good approach, a good 
toolbox, and a good process. First things first: What are our 
goals in compliance engineering? 

This book focuses on GPL Compliance Engineering. The GPL 
is a copyright license with terms that trigger when we distribute 
the code. The most famous and widely used version of the 
license is the GPL Version 2 (GPLv2). Software such as the 
Linux kernel or many commonly-used versions of GNU userland 
tools fall under this license. There are other licenses, such as 
the Library or Lesser GPL (LGPL) or Affero GPL (AGPL), which 
are regarded as being in the same “family” but which have 
different terms. We address key aspects of the LGPL in Flowchart 
#52 later in this text, but we do not specifically address the 
terms of the AGPL in this book. 

The focus in this book will be on GPL Version 2. This is formally 
referred to as the GPLv2. However, throughout this book we will 
refer to it as the GPL to keep things simple. This means that 
unless explicitly stated otherwise, we mean “GPL Version 2” 
when we say “GPL.” You can review this license and all the other 
GPL family licenses on the Free Software Foundation website.3

GPL compliance engineers are concerned about software 
products that are electronically or physically distributed. 
Sometimes this means scanning source code to confirm it has 
the expected licensing. Sometimes this means scanning binary 
code or cross-checking binary code with source code to confirm 
that they match. In practice, most compliance work is focused 
on physical products sent to market or firmware downloads. 

2. See page 62
3. See https://www.gnu.org/licenses/licenses.html

https://www.gnu.org/licenses/licenses.html


Practical GPL Compliance: Approach	 3

This book explains the process of confirming whether the binary 
code on a physical device contains GPL code and then taking 
action to ensure compliance if it does.

Compliance Requirements

The GPLv2 (hereafter the GPL) has a couple of important requirements. 
One is ensuring that a copy of the license is provided along with the 
distributed binary or source code. The other is providing access to 
source code when distributing binary code either as a stand-alone 
software application or as part of a physical product.

The GPL describes two ways to comply with the source code 
access requirement:

1. Accompany a product with the “complete and corresponding 
source code” (section 3a)

2. Include a written offer to supply the “complete and corresponding 
source code” (section 3b)

These two methods differ in how the source code is delivered (either 
with the binary code or later if requested), but they do not differ in what 
needs to be delivered: complete and corresponding source code.

Compliance Goals

Now that we understand the GPL compliance requirements, we 
can understand our overarching compliance goals:

1. Make sure a copy of the license accompanies the distributed 
binary or source code .

2. Make sure that the “complete and corresponding” source 
code is available.



Practical GPL Compliance: Approach	 4

Copy of the License
When you distribute GPL code as binary or source code, you need 
to ensure it is accompanied by a copy of the GPL license. This is the 
easiest and quickest part of any GPL compliance engineering process. 

You can include a copy of the GPL license as physical or digital 
media along with a product. Some examples are:

●  Smart televisions that come with a copy of the GPL physically 
printed at the back of the instruction manual along with 
other legal notices.

●  Smartphones that come with a copy of the GPL under the 
Settings > Legal menu or similar location.

The important objective is to ensure that the license is easily 
discoverable by an interested party.

“Complete and Corresponding” Source Code
This is a challenging part of GPL compliance and the situation that 
the majority of this book helps to explore, explain, and solve. As 
mentioned above, our focus is primarily on physical products 
distributed with GPL software contained inside, because this is 
the most common and most problematic use case for compliance 
engineers. Typical examples include firmware flashed onto a device 
or firmware updates downloadable from a website.

Two Key Considerations
There are two primary checks you need to focus on to ensure 
compliance:

1. The source code does not contain any license violations.

2. The source code is “complete and corresponding” for the 
binary code distributed.



Practical GPL Compliance: Approach	 5

The Ideal Situation
In an ideal world, there is a binary package or a collection of binary 
packages, such as a firmware and a corresponding source code 
archive. The corresponding source code archive contains only 
open source components and perhaps some object files to relink 
binaries that contain Library or Lessor GPL (LGPL) software, along 
with instructions for rebuilding the binary or firmware. After performing 
the rebuild, the original binary file is an exact match to the rebuilt 
binary file.

The Reality
Source code is often not “complete and corresponding.” When 
you rebuild a binary, you may find different file sizes or even 
completely different versions or types of binary code compared 
to the expected original. This is the first major challenge we face 
when seeking to ensure GPL compliance.

Another challenge comes as a consequence of the above. The 
source code for a device often contains license violations that are 
unrelated to the binary code it is meant to support. For example, 
source code archives sometimes contain prebuilt binaries that 
have no relevance to being “complete and corresponding,” and 
instead serve only to put a company out of compliance when it 
makes source code available in good faith.

This is where the bulk of GPL compliance engineering takes place. 
Compliance engineers live on the intersection between source 
code and binary code. Our challenge is to ensure that a physical 
product ships with the expected code, with a copy of the correct 
licenses, and with the “complete and corresponding” source code 
or a written offer to provide that “complete and corresponding” 
source code on demand.



Practical GPL Compliance: Approach	 6

Toolbox

Now that our challenge is clear, it is time to talk about the type of 
tools we need to get things done. This discussion is not intended 
to be exhaustive, but rather to provide a starting point. If you have 
access to the tools we talk about below, you can do everything 
contained in this guide. In turn, that will allow you to address the 
vast majority of GPL compliance engineering challenges out there.

Default Tools
The primary tool for any open source compliance engineer is Linux. 
This means that every active engineer needs to download, install, 
and set up a standard Linux distribution such as Fedora, CentOS, 
openSUSE, Debian, or Ubuntu. They all come with default tools 
pre-installed that act as the backbone of our work. Examples 
include file, readelf, find, xargs, grep, dd, and modinfo. 

Here are free installations you can get, and where you can get them:

●  Fedora: https://getfedora.org/

●  openSUSE: http://opensuse.org/

●  Debian: https://www.debian.org/

●  Ubuntu: https://www.ubuntu.com/

●  CentOS: https://www.centos.org/

Armijn Hemel’s default installation for compliance engineering is 
Fedora. However, the choice of distribution matters less than the 
engineer being comfortable with that choice. 

Binary Analysis
There are some specialized tools to help with analysis of binaries. 

https://getfedora.org/
http://opensuse.org/
https://www.debian.org/
https://www.ubuntu.com/
https://www.centos.org/


Practical GPL Compliance: Approach	 7

We mainly use the Binary Analysis Tool (BAT), but you have options, 
and can select the one you’re most comfortable using.

The Binary Analysis Tool (BAT) 
The Binary Analysis Tool makes it easy to look inside binary code, 
find compliance issues, and reduce uncertainty when deploying 
Free and Open Source Software. It is a modular framework that 
assists compliance and due diligence activities by using the same 
type of approach applied by copyright holders to discover issues 
in consumer electronics. BAT can open more than 30 types of 
compressed files, file systems, and media files; search for Linux 
kernel and BusyBox issues; identify dynamically linked libraries; and 
scan arbitrary ELF, Android Dalvik, and Java class files using a 
database with information extracted from source code to find out 
what software is inside. BAT is available for free under the Apache 
license so that everyone can use, study, share, and improve it. 

●  BAT direct download: https://github.com/
armijnhemel/binaryanalysis

●  BAT user guide: https://github.com/armijnhemel/
binaryanalysis/blob/master/doc/bat-manual.pdf

binwalk
Another tool for analysing firmware is binwalk — an easy to use tool 
for analyzing, reverse engineering, and extracting firmware images. 

●  binwalk download: https://github.com/devttys0/binwalk

●  binwalk user guide: https://github.com/devttys0/
binwalk/wiki

Source Code Analysis
Our focus is on how to address binary code and the distribution 
of physical devices. This does not mean that tools to address 

https://github.com/armijnhemel/binaryanalysis
https://github.com/armijnhemel/binaryanalysis
https://github.com/armijnhemel/binaryanalysis/blob/master/doc/bat-manual.pdf
https://github.com/armijnhemel/binaryanalysis/blob/master/doc/bat-manual.pdf
https://github.com/devttys0/binwalk
https://github.com/devttys0/binwalk/wiki
https://github.com/devttys0/binwalk/wiki


Practical GPL Compliance: Approach	 8

source code are unavailable. Indeed, every good compliance 
engineer has at least one such tool on hand to assist with confirming 
that source code licenses are what they expect. The best place 
to get started is usually with FOSSology, a free license scanner 
that examines source code archives and lets you know what 
licenses they appear to be under.

FOSSology
FOSSology (https://www.fossology.org) is both a compliance 
software system and a toolkit. As a toolkit, it allows you to run 
license, copyright, and export control scans from the command 
line. As a system, it provides a database and web UI to give 
you a compliance workflow. With one click, you can generate 
an SPDX file or a README with the copyright notices from your 
software. FOSSology deduplication means that you can scan 
an entire distro, submit a new version, and only the changed 
files will get rescanned. This can be a huge timesaving tool for 
large projects.

●  Learn more about the project here:  
https://www.fossology.org

●  Find a simple ‘Get Started’ guide to FOSSology here: 
https://www.fossology.org/get-started

Analysis of Binary Files

A Word about Binaries
In this book, the word “binary” can mean different things. Sometimes 
it means a single executable, sometimes it means an object file, 
sometimes it means an archive of binaries, sometimes a firmware; 
other times it means an unknown blob of data. 

 

https://www.fossology.org
https://www.fossology.org
https://www.fossology.org/get-started


Practical GPL Compliance: Approach	 9

Here is what these different types of binary uses all have in common:

1. They are not source code.

2. They could be built from open source code.

3. They should be analysed.

Tools for Analyzing Binaries

General Approach
Analysis of a binary can be performed using a number of methods 
and tools. It is generally recommended to use the Binary Analysis 
Tool4 or binwalk5 where possible, to quickly and simply look inside 
binary code without reverse analysis. You can also manually dissect 
a binary file, blob, or package such as firmware, but this tends to 
take more time, and provides little advantage in exchange for the 
increased complexity.

Limitations
Not every binary can be unpacked for analysis. For example, 
firmware might have been obfuscated through file system 
modifications, or it may have been encrypted. Sometimes it is 
possible to identify the file system modifications or to reverse the 
encryption, but in other cases, it is impossible. 

Advanced Methods
Advanced methods of getting around obfuscation include grabbing 
code from a “live” or running device through soldering connections 
or breaking into it over a network. These techniques are out of 
scope of this book. In the real world, most of the time, you will not 
face these challenges.

4. http://www.binaryanalysis.org
5. https://github.com/devttys0/binwalk

http://www.binaryanalysis.org
https://github.com/devttys0/binwalk


Practical GPL Compliance: Approach	 10

Source Code Analysis and Rebuild

A source code archive should be inspected to do the following tasks:

1. Find possibly problematic binaries in source code archives

2. Perform a rebuild of the source code and comparing it to 
the original binary

3. Find incorrectly licensed code

Finding Possibly Problematic Binaries
Source code archives from chipset manufacturers and ODMs 
(original design manufacturer) often contain more than just source 
code. Inside these archives you will often find:

●  Object files leftover from a previous build

●  “Out of tree” Linux kernel modules in binary form

●  Libraries/executables such as a root file system from a 
previous build

●  File system images

●  Linux kernel images with initial embedded ramdisks/
initramfs file systems

●  Other firmware images

Each of these files will be explored in more detail later.

You can easily find possibly problematic files using the “find” 
command in combination with the “file” and “xargs” commands. 
One easy way to do this is to run “file” for every file and redirect 
the output to a result file. You can then inspect this result file at 
your convenience. Here is an example command to get you started:

 



Practical GPL Compliance: Approach	 11

$ find /path/to/source/code -type f -print0 | 
xargs --null file > /path/to/result/file

You should search for:

●  ELF files 
Pay attention to the architecture. If an unexpected 
architecture is shown, such as MIPS, but your deployed 
device is ARM, then the binary can probably be removed.

●  PE32 and PE32+ files 
These are Windows binaries and usually have no place in 
a source code release related to an embedded Linux system. 
The exception is if they are related to ActiveX plugins.

●  Linux kernel boot images 
If these are present either as a compressed file or as part 
of a U-Boot boot image, they can almost always be 
removed, because they were almost certainly compiled 
using a different configuration file. Including them would 
lead to potentially introducing licensing requirements 
unrelated to the target device. If such images cannot be 
removed because they are needed by the build process, 
it indicates that the source code is not complete. The 
shortcut is to search for “vmlinux,” “vmlinuz,” or similar files.

●  MacOS X files 
Like Windows files, these have no place in a source code 
release of an embedded Linux system, except if they are 
related to software that would be served to Apple MacOS 
X machines by the device. The shortcut to search for is 
“Mach-O.” These files are often present in the prebuilt 
toolchain sources from Android as distributed by Google.

Object Files
Object files (extension “.o”) can frequently be found in source code 
releases. They are usually not problematic from a compliance 



Practical GPL Compliance: Approach	 12

perspective, because the corresponding source code is typically 
also present. However, they make analysis more complex, because 
they mean more files to look at. You can address this quickly and 
cleanly by checking if the corresponding extension “.c” or “.cc” files 
are present and, if so, using “make clean” to remove the object files.

If there is no source code, you may have a compliance challenge. 
There are situations where the object files are needed to complete 
the build process and should not be removed. One example is 
object files that are part of a proprietary program that is statically 
linked with LGPL licensed code and which need to be relinked. 
Another example is when object files are part of a proprietary program 
that is statically linked with GPL licensed code and where compliance 
may be difficult or impossible depending on your legal jurisdiction 
and your legal counsel’s interpretation of the GPL license.

“Out of tree” Linux Kernel Modules
Some devices contain components unsupported by the default 
Linux kernel. These need extra drivers to function correctly, and 
such drivers are often implemented as Linux kernel modules. A 
few examples include WiFi drivers, camera drivers, or firewalling 
modules. These extensions provide two common challenges:

1. Many drivers are provided prebuilt by vendors to ease 
integration issues. The license of these drivers should be 
carefully checked to ensure they are compatible with the 
license of the Linux kernel source.

2. When extra driver source code is available, it may not be 
integrated correctly in the source code tree. Incorrect 
integration in the build system often leads to missing source 
code in the final delivery.

Libraries/Executables
There are often library or executable binaries in the source code 
tree. This occurs when:



Practical GPL Compliance: Approach	 13

1. The source code tree was not properly cleaned up after 
building. This often occurs because someone forgot to run 
“make clean” after building binaries from the source code.

2. The binaries are in a “template” or “skeleton” directory used 
as the blueprint to build a firmware. The directory structure 
and the binaries in the template directory are copied first, 
and other files are added to it during the build.

If these binaries contain any open source licensed code and do 
not match the source code prepared for distribution, they should 
be removed. A wrong version number, a different configuration, 
or any other alteration from the source code could introduce 
unintended violations.

The key question when considering this matter is: “Is the source 
code ‘complete and corresponding’ to the built binary code and 
free of any extra binary or source code elements?”

File System Images
Sometimes entire file system images are included in the source 
code tree. For example, many Android source code trees contain 
file system images called “boot.img” and “system.img.” If these 
contain any open source software without corresponding source 
code, this could lead to unwanted violations. These images can 
typically be removed without any problem.

Other Firmware Images
There have been instances where complete firmware for devices 
unrelated to the device being brought to market have been found 
in the source code archive. These often contain different software 
versions, packages, and sometimes even architectures to the 
current device. As such, these firmware are an unwanted and 
unnecessary source of license violations, and can typically be 
removed without any problem.



Practical GPL Compliance: Approach	 14

Performing a Rebuild
The most effective way to see if the source code is complete and 
corresponding is to rebuild the software and compare it to the 
original (binary) software. If they are identical — or nearly identical 
— then it is a good indication the source code is likely correct.

Perfect(ish) Rebuilds
In some cases, paths and time stamps are incorporated into a 
binary file. This makes it very difficult, if not impossible, to do an 
exact rebuild. Therefore, “close enough” means that the only 
differences should be in timestamps, filename paths recorded in 
the binary, and similar items.

Requirements
For a rebuild, it is important to have the following information:

1. A description of the build environment.

2. Full build instructions.

Goals
A rebuild has two key goals:

1. Verify that the build works.

2. Verify the results.

Describing the Build Environment
To successfully compare rebuilt binaries with original binaries, the 
build environment has to be described as accurately as possible. 
This description should include:

●  The name and version of the Linux distribution or 
operating system that needs to be installed (example: 
Fedora 7, 32 bit, or Ubuntu LTS 12.04, 64 bit).



Practical GPL Compliance: Approach	 15

●  The name and version of any packages to install if they 
are not installed in a default installation.

●  Any modifications that need to be made to the default 
system, such as:

Symbolic links that need to be created.

Directories that need to be created.

Permissions that need to be changed.6

Files that need to exist.

Specific users that need to be created.

Environment variables that need to be set.7

If the build environment is different from the original, even to the 
extent of using a different compiler or different compiler options, 
it could have a big impact on the generated code. This in turn 
makes it a lot more difficult to compare the binary files to verify 
whether the source code appears to be “complete and corresponding” 
to the original binary.

Supplier/Client Roles
The requirement for accurate re-creation of build environments 
leads to a simple dynamic for providing information.

●  If you are a supplier needing to provide build environment 
information to a client, you should be as detailed as 
possible. 

●  If you are a client needing to have build environment 
information, you should ask your supplier to be as 
detailed as possible.

6. These include items like executable bits, read/write permission, and  
ownership permissions.

7. These include PATH, CLASSPATH, and similar.



Practical GPL Compliance: Approach	 16

Rebuild Instructions
The build instructions should clearly explain the exact steps taken 
to rebuild a binary. This includes:

●  The exact commands needed to rebuild the binary or firmware.

●  The expected results such as, for example, where binaries 
can be found after a rebuild.

In an ideal situation, you could give the instructions to a random 
engineer, who would then be able to perform a nearly perfect 
rebuild without any problems.

Verifying the Instructions
In the real world, you might expect that people doing a rebuild for 
enforcement purposes will stop at the first hurdle they encounter. 
You should not assume that people can (or want to) fix these 
issues; therefore, the rebuild instructions should be complete, 
tested, and foolproof.

It is best to perform a rebuild on a clean physical or virtual machine, 
using the exact instructions that were provided. This is because 
undocumented modifications frequently exist on development 
machines such as the one on which the original build was completed. 
If possible, task another engineer — one without extensive knowledge 
of the project — to do the rebuild and to document any problems 
encountered. Adjust the instructions as necessary to ensure clarity 
and build success.

Verifying the Results
After the rebuild, you need to verify the results. Make sure that the 
right results are being examined — nothing cached from a previous 
build. Two methods for accomplishing this are:

1. The checksum of the binaries.

2. The content of the binaries.



Practical GPL Compliance: Approach	 17

The Checksum of the Binaries
A cryptographic checksum or hash can be computed for the 
contents of the file. If the file that was rebuilt has the same hash 
as the original binary, then the files are identical. The tools for this 
are “md5sum” for MD5 hashes and “sha256sum” for SHA256 
hashes. The following commands will compute the hashes for two 
binaries and print the results. If the results are the same except 
for the path, then the files are identical:

$ md5sum /path/to/original/binary /path/to/new/
binary

$ sha256sum /path/to/original/binary /path/to/
new/binary

It should be noted that it is best to run these commands on the 
individual binaries in a firmware (like “smbd” or “iptables”) and not 
on the whole freshly built firmware. This is because the checksums 
for firmware might never be the same. Some binaries like BusyBox 
or the Linux kernel will return a different checksum every time, 
because by default they include timestamps internally.

The Content of the Binaries
In many cases, the checksums of an original binary and a rebuilt 
binary will not be identical because the paths of source code files 
and timestamps are included. These often differ with each build, 
even if an environment is carefully set up. 

Not to worry. The following steps can be taken to see if a rebuilt 
binary is close enough to the original binary:

1. Check the file size.

2. Compare the contents of the file.



Practical GPL Compliance: Approach	 18

Checking the File Size
The file size of the rebuilt binary should be very close to the original 
binary. If there is a big difference, first check if one of the binaries is 
“stripped” (no debugging symbols present) and the other is not 
stripped. If this is the case, strip the other binary too, using the “strip” 
command (this tool should be included in the toolchain). If the 
difference is still significant, then the binaries are likely not the same.

Comparing the Contents of the File
The “strings” command can be used to extract human readable 
strings from a binary. This can provide a lot of useful information.

The most important point is that the differences between binaries 
that were built identically will be very minor. For the most part, you 
can expect differences to be constrained to timestamps, filenames, 
and directory names. 

This means that you can compare the contents of a file with a 
simple three-step process:

1. Rebuild the binary.

2. Extract contents using “strings.”

3. Compare the results to the original binary.

The following commands will help you extract the contents of the files:

$ strings /path/to/old/binary > 
/tmp/strings.old

$ strings /path/to/new/binary > 
/tmp/strings.new

$ diff -u /tmp/strings.old 
/tmp/strings.new | less

If the differences uncovered are limited to timestamps and path names, 
then it is almost certain that the two binaries are in fact identical.



Practical GPL Compliance: Approach	 19

Finding Incorrectly Licensed Code
Modifications to open source licensed programs may not be licensed 
correctly. One classic example is when changes to the Linux kernel 
made by a chipset manufacturer either lack license statements or 
contain a statement that is not compatible with the GPL. 

There have been enforcement cases focused on relicensing Linux 
kernel driver code added by chipset manufacturers. The following 
steps should be taken to avoid such situations:

1. Find incorrectly licensed files.

2. Find out who introduced the incorrectly licensed files.

3. Find out if the files are actually needed.

4. Find a version under an acceptable license.

5. Seek permission to change the licenses.

6. Rewrite the software.

Finding Incorrectly Licensed Files
Using license scanners, it is possible to find out the license of 
source code files. There are many license scanners. Some of them 
are proprietary (e.g., Black Duck Protex, Palamida, Whitesource, 
Protecode, FOSSID, and FOSSA); others are open source 
(FOSSology, Scancode). None of the license scanners do a perfect 
job, because license scanning is difficult to do correctly, and there 
are many source code files that use non-standard license headers, 
or have no license text in a header at all.

For code you wrote yourself, there are ways to make license 
identification easier for license scanners. One example is to use 
SPDX short identifiers. SPDX is a simple, standard way of describing 
package contents and has seen adoption across the industry for 
its management of licensing descriptions. You can learn more 
about SPDX at https://spdx.org/. 



Practical GPL Compliance: Approach	 20

Finding Who Introduced Incorrectly Licensed Files
After discovering incorrectly licensed files, it is important to understand 
who introduced them. It usually boils down to one of two sources:

1. The upstream project.

2. The ODM/chipset manufacturer. 

If you identify a situation where open source code does not have 
a correct license statement, many upstream projects will appreciate 
having this pointed out. Fixing the issues at the source provides 
better information for everyone. Please note that in the case of the 
Linux kernel, there are many files that do not have a correct license 
statement. However, existing files have been in the Linux kernel 
for many years and are not considered a problem. Your concern 
is to find new rather than known files. A method to quickly filter 
the known files is described here: https://lwn.net/Articles/552758

Sometimes people or companies have a list of “trusted” upstream 
projects. They regard all code originating from that project to be 
ready for use without further review. What projects will be trusted 
and for what reasons is a decision that will differ per person or 
organization. An illustrative rule of thumb is that the Linux kernel 
obtained directly from kernel.org may be trusted but a random 
kernel fork on GitHub may not. 

Finding Out If Files Are Actually Needed
If the problematic files were not introduced by the upstream project 
(whether the upstream project is to be trusted is a separate topic 
for discussion) then it might be wise to remove the files. As an 
example, if a file for a Microsoft Windows driver is present in the 
Linux kernel source code tree, it can be safely removed.

Similarly, if a file is not used in the final binary or during the build 
process, it can be safely removed. One way to check is by removing 
it from the source code tree and rebuilding the binary again (after 
cleaning up build artifacts from previous builds, of course, and 



Practical GPL Compliance: Approach	 21

doing a fully clean build). If the resulting binary is identical (or “close 
enough”), then the file can safely be removed.

Finding a Version of a Driver Under an Acceptable License
In the embedded Linux industry, many mistakes have been made 
in the past regarding incorrectly licensed source code files, particularly 
for drivers. Some vendors have already relicensed newer versions 
of the driver under acceptable licenses. However, ODMs frequently 
still ship old driver versions, either because they are unaware of 
the updates or because they don’t want to test if the new driver 
works properly with their components.

Seeking Permission to Change the Licenses
Changing a license is usually the most difficult solution, but sometimes 
the only option left, apart from rewriting the software. If a file is 
used and does not have the correct license, you should ask the 
copyright owner to relicense the file. Some copyright owners might 
not be willing to, but other manufacturers or developers might not 
object (see the previous section).



CHAPTER 2:

Common Pitfalls
“We demand rigidly defined areas of 
doubt and uncertainty!” 
DOUGLAS ADAMS



Practical GPL Compliance: Common Pitfalls	 23

Pitfall #1: Toolchain

One component that is essential for doing a rebuild is the toolchain, 
which consists of the compiler, assembler/linker/et cetera, and a 
C library. For embedded Linux systems, the compiler is almost 
always GCC (although LLVM is starting to be used), the assembler/
linker comes from GNU binutils, and the C library is glibc or uClibc 
(both LGPL licensed) or musl (MIT licensed) on “regular” embedded 
Linux, and bionic on Android systems (although glibc is frequently 
used on Android too for add on programs). Although LLVM and 
musl are being used increasingly in embedded systems, they are 
still the exception.

The toolchain is often found to be not compliant. A common 
scenario is that a toolchain with GCC and GNU binutils is provided 
in binary-only form, without the source code or the offer for the 
source code. Although it is possible to use the provided binary 
toolchain to rebuild the binaries, it is not the correct approach. 
The GCC compiler and GNU binutils are released under GPL v2 
or v3, depending on the version. Their source code, or a written 
offer for the source code, should be included with the binary. 
When glibc or uClibc is used, there is an additional reason: Parts 
of the (prebuilt) toolchain (from the C library) are sometimes 
copied from the toolchain into a firmware image. This means 
that the sources and configuration to rebuild the C library need 
to be provided too (as per the LGPL license conditions). The 
quickest way to fulfill the requirements is by having the complete 
toolchain sources.

Another consideration is that for embedded Linux, the toolchain 
is a necessary component in rebuilding the binary. Embedded 
Linux devices use different CPUs than regular PCs. While regular 
PCs use Intel or AMD chips based on the x86 or x86-64 architectures, 
the embedded devices are often built using ARM, MIPS, or PowerPC 
chips (although other architectures can be found too). The binaries 



Practical GPL Compliance: Common Pitfalls	 24

for these platforms are generated by a so-called “cross-compiler” 
that runs on a regular PC but outputs code for a different platform 
such as MIPS or ARM. Building a working cross-compiler is a 
non-trivial task; without the sources and the exact description how 
to rebuild the cross-compiler (either using a script or the manual 
instructions), it will be very difficult to recreate the correct setup to 
perform a rebuild.

Pitfall #2: Android and Embedded Devices

Systems that are either running Android or that borrow heavily 
from Android, may have a few common pitfalls.

Android prebuilt tools
The standard Android software development kit as shipped by 
Google comes with a large number of tools that are prebuilt for 
various platforms, such as Linux, Darwin, and Microsoft Windows, 
and even Linux kernel images for QEMU. Many of these tools are 
licensed under GPL or LGPL, such as GCC and binutils, cmake, 
gdb, and many others. These files can easily be identified by looking 
for directories that contain “prebuilt”:

$ find -d /path/to/android/sdk | grep prebuilt

These directories often contain a variety of prebuilt tools or even 
Linux kernel images that may be without obviously placed 
corresponding source code or written offer. Frequently there is a 
file called “PREBUILT” in the directory that also contains the binaries. 
This file points to source code and sometimes also contains more 
detailed build instructions. As an example (from an earlier version 
of Android, for the ccache tool):

 



Practical GPL Compliance: Common Pitfalls	 25

The objects in this prebuilt directory can be rebuilt using 
the source archive

ccache-2.4-android-20070905.tar.gz

hosted at <http://android.kernel.org/pub/>.

It should be noted that these particular instructions may not be 
good enough to result in GPL compliance for chipset manufacturers, 
ODMs, and their downstream recipients, for a number of reasons:

1. This method does not produce a valid written offer, according 
to GPLv2 section 3b. While they arguably cover the originator 
of the code by the “equivalent access” clause in GPLv2 
section 3 (because they distribute the source code only 
online), the instructions do not extend to the chipset 
manufacturers, the ODMs, and their downstream recipients.

2. As of the publication date of this book, it should be noted 
that one commonly referred to location for Android source, 
called android.kernel.org, has been offline since September 
2011. This means that the relevant source code can no 
longer be found at this particular location, though it may be 
found at other URLs.

Having these prebuilt components in the source code archive without 
the corresponding source code can present a compliance risk.

One solution is to also include the source code for these prebuilt 
components. Another solution is to remove the components if they 
are not needed to do a rebuild (e.g., in most cases, it makes sense 
to remove the binaries for MS Windows and Darwin), or to replace 
the prebuilt components, if they are actually needed for the build, with 
instructions on how to fetch the prebuilt components from Android’s 
Git server. You should make sure that the exact same version as the 
prebuilt versions is fetched; otherwise the build might fail or it might 
be difficult to compare binaries (see “Performing a Rebuild”). It should 
be noted that for some components, such as the toolchain, it might 



Practical GPL Compliance: Common Pitfalls	 26

still be necessary to provide sources, in case glibc or uClibc has been 
used and shipped on the device or in the firmware.

Missing/Incorrect License Files
Android’s build system generates a NOTICES.html.gz file that is 
displayed by default in the “legal” tab on a phone or tablet. This 
file is generated by a script that looks for files that indicate the 
license status, called “NOTICE.”

For some tools and programs in Android, you may find missing license 
identifiers or have used the wrong license text (in case of the Linux 
kernel). These omissions were fixed in the most recent versions of 
Android (Android 6, possibly later versions of 5), but many older 
versions (including several versions of Android 5) do not have these 
fixes. Chipset manufacturers and ODMs typically have not applied 
the existing fixes because they were not informed by Google. The 
omission of these texts has been raised in enforcement cases.

The most common omissions and errors are with:

●  iproute2 — missing license reference in the NOTICES file

●  iptables — missing license reference in the NOTICES file

●  Linux kernel — sometimes wrong version of the license in 
the NOTICES file (Linux kernel 2.6-specific)

Fixing these issues is not hard at all, and patches are readily 
available, as described below.

iptables
The notices and license files for iptables are missing in older versions 
of Android. Google fixed the bug in the following Git commit:

https://android.googlesource.com/platform/external/
iptables/+/b6da12d1a9020e2819f3c449244801a285659f81

https://android.googlesource.com/platform/external/iptables/+/b6da12d1a9020e2819f3c449244801a285659f
https://android.googlesource.com/platform/external/iptables/+/b6da12d1a9020e2819f3c449244801a285659f


Practical GPL Compliance: Common Pitfalls	 27

iproute2
The notices and license files for iproute2 are missing in older 
versions of Android. Google fixed the bug in the following Git 
commit: https://android.googlesource.com/platform/external/
iproute2/+/5aa4845c8ef3ea0371955a2ba5f7baf7ed4e2df4

Linux kernel
The Linux kernel license file is sometimes wrong, because Google 
used the license text of a prebuilt Linux kernel (2.6.x), which has 
a slightly different license text than later versions. This was not a 
problem for Android versions using the 2.6.x kernel, but when the 
Linux kernel moved to 3.x and later 4.x, the license text was not 
entirely correct. Google fixed this in late 2015:

https://android.googlesource.com/platform/build/+/
b463fcde80f5615b3fe6891b8b78c010ec8cd37b

Pitfall #3: “Out of tree” Linux  
Kernel Modules

Many vendors ship Linux kernel modules that add functionality that 
is not provided by the standard Linux kernel, or that is not yet present 
in the version shipped for the device, such as support for certain 
hardware, firewalling modules, new security features, etc. Linux 
kernel modules for the 2.6 and later releases have the “.ko” extension. 
Kernel modules for the 2.4 and older kernel often have the extension 
“.o” (but that could also be used for regular object files).

For these so-called “out of tree” kernel modules, it is important to 
find out which license they are under and if there is complete and 
corresponding source code.

Linux kernel modules can contain several fields that detail things 
such as the author and a description, but also a license field. An 

https://android.googlesource.com/platform/external/iproute2/+/5aa4845c8ef3ea0371955a2ba5f7baf7ed4e2d
https://android.googlesource.com/platform/external/iproute2/+/5aa4845c8ef3ea0371955a2ba5f7baf7ed4e2d
https://android.googlesource.com/platform/build/+/b463fcde80f5615b3fe6891b8b78c010ec8cd37b
https://android.googlesource.com/platform/build/+/b463fcde80f5615b3fe6891b8b78c010ec8cd37b


Practical GPL Compliance: Common Pitfalls	 28

example from Linux kernel 4.5. (file “drivers/clk/clk-pwm.c”) looks 
like this:

MODULE_AUTHOR(“Philipp Zabel  
<p.zabel@pengutronix.de>”);

MODULE_DESCRIPTION(“PWM clock driver”);

MODULE_LICENSE(“GPL”);

These fields are then included in the kernel module binary when 
it is built. They can later be extracted from the binary either by 
using the “modinfo” tool (preferred) or manually (as recent versions 
of “modinfo” no longer support the format for Linux kernel 2.4 or 
older). The important fields to look at are the author field and the 
license field. The author field usually indicates the copyright holders 
of the specific code being reviewed. The license field could indicate 
the possible license of a file. This field is quite important, as certain 
pieces of functionality in the Linux kernel can only be used by 
modules that have explicitly declared that they are GPL-licensed.

It also happens that kernel modules are distributed in a firmware 
or source code archive, but they are not used, because they are 
never loaded by the operating system, either because there are 
no programs to load them, or because the operating system does 
not allow it (it may be a different version or even a completely 
different architecture). Finding out if a module is used is outside 
of the scope of this book.

Extracting License and Author Fields from a  
Kernel Module
The license field can be extracted from a Linux kernel module 
using the modinfo tool:

$ modinfo -l /path/to/kernel/module

 



Practical GPL Compliance: Common Pitfalls	 29

Similarly, the author field can be extracted using:

$ modinfo -a /path/to/kernel/module

Note: Recent versions of the modinfo program no longer have 
support for kernel modules for Linux kernel 2.4.X and earlier (using 
the “.o” extension). For those modules, you can use the “strings” 
command instead:

$ strings /path/to/kernel/module | grep -i license

Extracting Version and Architecture Fields from a  
Kernel Module
Similarly to the license field, the version and architecture information 
can easily be retrieved from a Linux kernel module:

$ modinfo /path/to/kernel/module | grep ^vermagic

For 2.4.X and earlier, the version can be extracted as follows 
(because the modinfo tool on recent Linux distributions no longer 
can process modules for 2.4 or earlier):

$ strings /path/to/kernel/module | grep kernel_
version

The architecture can be retrieved using different means, such as 
the “file” command:

$ file /path/to/kernel/module



Practical GPL Compliance: Common Pitfalls	 30

Pitfall #4: Rescue Mode/Install  
Mode Systems

Quite a few embedded Linux devices have a special mode that is 
used only for system recovery (rescue mode) or when installing a 
new firmware. This is done by booting a different Linux kernel from 
a different partition on the flash memory. These rescue partitions are 
often not updated when a new firmware is released and are simply 
forgotten. However, for compliance, it is very important to have the 
complete and corresponding source code for all of the different Linux 
systems that are used on a device or while updating a firmware.

These rescue partitions tend to have different contents than other 
partitions. It is very common to see that both the rescue partition 
and the normal one have a copy of BusyBox, but with a different 
size and set of tools integrated. This means that they were built 
with different configurations. It is also not uncommon to see that 
a different Linux kernel (older version, known to work) has been 
used, but that the source code releases have the source code 
only for the Linux kernel that is booted in normal operation. There 
have also been instances where the C library was different (uClibc 
in the rescue partition, glibc in the normal partition, and so on).

It also happens that a separate version of Linux is booted only to 
perform the installation of a new firmware, and that version is 
embedded in the firmware update itself and is not on the device. 
Or, it could be that there are three different instances of Linux involved 
in one single firmware update: a temporary Linux booted when 
performing the update, a different version when writing a rescue 
partition, as well as a third version for the regular partition. It is 
important to look at everything that is installed or used at installation 
time: The device and the firmware update are both important.



Practical GPL Compliance: Common Pitfalls	 31

Pitfall #5: Bootloader

One overlooked component in compliance engineering is the bootloader. 
A few commonly used bootloaders on embedded Linux systems 
(e.g., U-Boot and Redboot) are GPL-licensed. The reason they are 
overlooked is because they come preflashed on the boards or chips, 
and ODMs frequently do not touch this component at all. Many times 
the bootloader is also not included in a firmware update, but the 
firmware update overwrites only parts of the flash chip in a device 
and leaves the bootloader alone. However, if the bootloader is GPL-
licensed, source code for the bootloader should be delivered as well.

If possible, perform your analysis on the firmware update as shipped 
to customers (see “Pitfall #4”) as well as on a dump of the flash 
contents of the actual device, unless the firmware update is actually 
the same as the flash dump.

If the bootloader is not included, it might be necessary to extract 
the contents of the bootloader from the device. This is outside of 
the scope of this book.

Pitfall #6: Missing Build System

There are build systems that separate the sources of packages 
and the description of how to build them. Some build systems 
have a directory called “download” or “dl” that contains the sources, 
while the Makefiles, configurations, and patches are in a separate 
directory. Some companies will  publish the contents of the directory 
only with the sources but not the build system.

This is wrong for a few reasons:

1. Any patches that might have been applied are now not 
included, meaning that the source code is incomplete.



Practical GPL Compliance: Common Pitfalls	 32

2. Makefiles and other build scripts often contain configuration 
options (environment variables, compiler options, etc.) that 
influence how a package is built. Without this information, 
the binary cannot be rebuilt successfully, or at least not 
(near-)identically.

Pitfall #7: Incorrect or Missing  
BusyBox Configuration Files

An often-encountered problem is that BusyBox cannot be rebuilt in 
such a way that it corresponds to the binary or binaries in a firmware. 
The BusyBox program is very modular; functionality can be added 
or removed by editing a configuration file (usually using a special 
configuration program). This configuration file is read during build 
time and determines which functionalities (called “applets”) will be 
included in the BusyBox binary. The configuration file is therefore a 
very necessary part of the “complete and corresponding source 
code,” and a missing or incorrect configuration file for BusyBox has 
been enforced many times.

Missing BusyBox configuration file
Source code release archives often contain only the source code 
for BusyBox, but not the configuration, because the build system 
is not included (see Pitfall #6).

An easy check for this is to look for a file called “.config” in the top-level 
source code file of the BusyBox source code tree. If it cannot be found, 
it might be in a separate directory in the build system, if present.

Incorrect BusyBox configuration file
Another problem encountered at times is that the BusyBox 



Practical GPL Compliance: Common Pitfalls	 33

configuration file or files are incorrect: The original binary and the 
rebuilt binary have different sets of applets. In many of these cases, 
the chipset manufacturer or ODM cannot find or recreate the 
correct configuration file.

It is possible (with tools contained in the Binary Analysis Tool) to 
re-create a BusyBox configuration file that could be used as the 
basis of re-creating the real configuration file. However, this solution 
should be used only as a last resort.

Multiple different BusyBox binaries, one  
configuration file
Quite often there are multiple BusyBox binaries included in a 
firmware, each with a different configuration. A common example 
is a rescue system (see Pitfall #4) that contains a minimal version 
of BusyBox, with the full system containing a BusyBox instance 
with much more functionality. The source code archive should 
include the configurations for all Busybox instances that are in use 
on the device, but frequently, the configuration for only one of the 
instances of BusyBox is present.

Pitfall #8: Incorrect or Missing Linux Kernel 
Configuration Files

Very similarly to Pitfall #7, the configuration file for the Linux kernel 
is often missing or incorrect.

Finding which Linux kernel configuration was used
Finding out what configuration was used to build a Linux kernel 
binary is not always trivial, and sometimes a rebuild and comparison 
(as described earlier in this book) will be necessary. Sometimes 
the kernel configuration will be included in the Linux kernel binary 



Practical GPL Compliance: Common Pitfalls	 34

as a bzip2 compressed file. This happens if the “CONFIG_
IKCONFIG” option was enabled during the kernel build. In that 
case, it is easy to find the kernel configuration that was actually 
used (for example, by unpacking the binary with the Binary 
Analysis Tool and then looking for the configuration). If the 
configuration was not stored in the Linux kernel image, then your 
only option to verify whether a kernel configuration is 100% correct 
is a rebuild and compare.

Missing Linux kernel configuration file
Source code release archives often contain only the source code 
for the Linux kernel, but not the configuration. Depending on the 
setup, the Linux kernel configuration could be in various locations. 
One common location is a file “.config” in the root of the Linux 
kernel source tree (generated by the Linux kernel configuration 
commands like “make config” or “make menuconfig”). Another 
location is in the “arch” subdirectory. By default, the Linux kernel 
source code tree contains many configuration files, and vendors 
tend to put the configurations there. For example, “arch/arm/
configs/bcm2835_defconfig” contains the configuration for a 
particular Broadcom board. Which configuration file to use is set 
by the build scripts. A third option is that the configuration file is 
kept outside of the Linux kernel archive, with the build scripts, and 
is first copied to the Linux kernel source code tree during the build. 
If the build system is missing (see Pitfall #6) and the configuration 
file is not included in the Linux kernel archive, then the Linux kernel 
source code will not be complete and corresponding.

Multiple Linux kernel binaries, one configuration file
Quite often there are multiple Linux kernel binaries included in a 
firmware, each with a different configuration. A common example 
is a rescue system (see Pitfall #4) which contains a minimal version 
of the Linux kernel, with the full system containing a Linux kernel 



Practical GPL Compliance: Common Pitfalls	 35

instance with much more functionality. The source code archive, 
however, may have the configuration for only one of the two versions 
(or three, or even more).

Incorrect Linux kernel configuration file
It also happens that the Linux kernel configuration file may simply 
be not correct and that the appropriate Linux kernel binary cannot 
be compiled because functionality has been added or removed 
in the configuration.

Pitfall #9: Not Including the Version 
Number in Firmware and Source Code 
Archive Filenames

One very common mistake is that firmwares and corresponding 
source code archives often do not have the version name (and the 
device name) in the filename, but use a generic name, such as 
“GPL.zip,” for various devices and versions of source code. This 
makes it very easy to make mistakes and deliver the wrong files, 
which might lead to the impression that you are out of compliance.

The solution is to use, or demand that suppliers use, a naming 
convention that would include:

●  Device name/model number (or multiple, if the files are 
identical)

●  Firmware revision number

●  Revision level

For example: A device called AB-123 with firmware 1.2.3.4 would 
have a firmware filename “FW_AB-123_1.2.3.4.bin” and a source 
code archive filename “GPL_AB-123_1.2.3.4-0.bin.”



Practical GPL Compliance: Common Pitfalls	 36

Using naming conventions like these will make it a lot easier to 
locate the right files, avoid making mistakes, and spot errors on 
download sites.



CHAPTER 3:

Scenarios  
for Releasing  
Software
“‘Did I do anything wrong today,’ he 
said, ‘or has the world always been 
like this and I’ve been too wrapped up 
in myself to notice?’”
 
DOUGLAS ADAMS



Practical GPL Compliance: Scenarios for Releasing Software	 38

Scenario #1: Software On A  
Device/Offline Distribution

Software is distributed onto a device, for example, flashed onto a 
device. There are two ways to comply with the license:

1. Deliver the complete and corresponding source code with 
the device, for example on a CD, DVD, or other medium. In 
some cases it might also be possible to include it on the 
device itself (given enough flash or storage space), but what 
is important is that the user should be able to retrieve the 
source code as well.

2. Add a written offer, valid for at least three years (for GPLv2; 
for GPLv3 this period might be longer, depending on how 
long the device is supported), to any third party for the 
source code.

The benefit of the first method is that there are no further 
obligations, as all the necessary information (license texts, 
copyright information, and so on) are included in the source 
code archive, as long as it is complete and corresponding. The 
drawback is that often the source is not complete and 
corresponding, and it is difficult to correct any mistakes discovered 
after creating the CD, DVD, or image. One situation that often 
arises is that just before shipping, a new firmware is flashed 
onto the device, but the CD/DVD distributed alongside it contains 
the GPL source code for a prior firmware revision. This happens 
because there was not enough time to create a new CD/DVD. 
Issues like this can potentially be addressed with a good Over-
The-Air update process. See Flowchart #4 on page 61 for one 
high-level example.

With the written offer it is easier to correct any mistakes later on, 
but there are a few drawbacks: It is necessary to keep an 



Practical GPL Compliance: Scenarios for Releasing Software	 39

infrastructure to fulfill the written offer (someone has to be responsible 
to create a source code CD/DVD and ship it) and there are also 
some legal gray areas pertaining to whether or not license statements 
and copyright statements should be delivered with the binary. Not 
everyone agrees on this, but there are increasingly more copyright 
holders who insist on having the copyright notices from the source 
code delivered with the binary. As previously stated, when delivering 
source code with the product this requirement has already been 
fulfilled, but when shipping a written offer, this is not the case. 
Extracting copyright notices from source code is awkward. 
FOSSology is one tool that can help, but additional checking may 
be required.

It might be best to choose shipping the source code with the 
device, with an extra optional written offer with information on how 
to ask for the source code. This way, it can be argued (if there is 
an error with the source code shipped) that the preferred way 
always has been the written offer and that the source code was 
mainly to provide license texts and copyright statements. If the 
source code is not complete and corresponding it might be 
incorrect, but not materially incorrect.

Please note that this scenario is independent of how firmware on 
a device is updated, which the next scenarios will dig into.

Scenario #2: Manual Download  
From Website

When providing a firmware update on a website (independent of 
how the compliance for an initial device delivery is done — see 
the previous scenario for that) there are often three possible choices 
to make:



Practical GPL Compliance: Scenarios for Releasing Software	 40

1. Provide the source code with the firmware update in a 
single archive. This would fulfill the requirements of 
GPLv2, section 3a.8

2. Include a written offer, as per GPLv2, section 3b.9

3. Provide a separate download next to the firmware, which 
would count as “equivalent access.”

The same benefits and drawbacks apply as in Scenario #1, although 
it is much easier to correct mistakes (in choices 1 and 3) than 
when shipping a physical device, as it is easier to change the 
download.

Keep in mind that when offering source code online for download, 
there is always the possibility that a new website will be created 
later. If the web team is not aware that source code downloads 
were a requirement, a company may fall out of compliance after 
a new website is rolled out. It is important to note this download-
requirement in the website change procedures and process. 

Scenario #3: Automatic/Over The  
Air Updates

For automatic updates and “over the air” (OTA) updates, shipping 
source code is almost impossible. This scenario for delivering 
binaries was likely not available when the GPLv2 was drafted in 
1991. Automatic updates surgically update a few programs or 
files, and the size of the source code delivered to a device would 
dwarf the size of the executable (for example, the Linux kernel). 
Also, on many devices that can receive OTA updates it would be 
hard to access the downloaded source code or do anything with 

8. See https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
9. Ibid.

https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html


Practical GPL Compliance: Scenarios for Releasing Software	 41

it. Another problem is that there might simply not be enough space 
available on the device, and distribution of the source code might fail.

For OTA updates, the practical solution is to include a written offer. 
Please note that this is independent of how the device was originally 
shipped (source code, or written offer).

How and where copyright notices and license texts should be 
delivered can be a real challenge, especially if the device does not 
offer any way to interact with the user (display, web interface, and 
so on). If that is the case it might be best to point the user to a 
website and offer the information there instead of on the device 
(which would be futile as the user has no access to it) and point 
out that the license text is from 1991 and that OTA delivery models 
were not available then. 

Scenario #4: Field Engineer  
Applied Updates

In some cases (for example, industrial automation) it is common 
that a firmware update is applied by a field engineer of the 
manufacturer, or by a support firm. It is recommended to have the 
field engineer bring a CD/DVD with the source code and hand it 
over after the firmware update has been completed.



CHAPTER 4:

Scenarios  
for Buying  
Software
“Everything starts somewhere, although 
many physicists disagree.”
 
TERRY PRATCHETT



Practical GPL Compliance: Scenarios for Buying Software	 43

Context

When procuring devices or components from a third party to sell 
as part of your product, it is important to understand that the 
company offering the product in the market is responsible for the 
license compliance of the product. Often when a compliance 
problem arises, there is a conflict about who is responsible and 
who should bear the costs. This can lead to suppliers and 
downstream OEMs pointing fingers and blaming the other party. 
However, in the end, the company delivering the product to the 
market will likely be found responsible for ensuring compliance 
with the license.

It is also true that fixing compliance issues will be more expensive 
than preventing compliance issues. If the whole supply chain works 
together from the start to prevent these issues, costs for fixing 
issues can generally be kept low.

That being said, changing how current supply chains work is a 
multi-year effort. In this section, we will explore a few solutions 
that look into lowering risks for all parties in the supply chain.

Scenario #1: Supply Chain Solutions 
For SoC Vendors

In most supply chains, the System on Chip (SoC) vendors have 
the biggest impact: They choose or build the software development 
kit and build a reference implementation that ODMs subsequently 
modify. If the SoC vendors get compliance right, then it is much 
easier for downstream recipients to comply with the license as 
well. Here are a few solutions that are worth considering:

1. Pick a standard SDK instead of building your own SDK.



Practical GPL Compliance: Scenarios for Buying Software	 44

2. Actively participate in the upstream software projects, and 
try to use as much “vanilla” software as possible.

3. Have a third party check/audit license compliance.

Pick a Standard SDK
It is highly recommended that SoC vendors use a standard SDK 
instead of creating their own. From a license compliance perspective, 
the most compelling reason for this is that these standard SDKs often 
have mechanisms for easier license compliance built directly into the 
system. Plus, they have been reviewed by many people already and 
are supported by a much larger group of people than an in-house 
developed solution would be. Examples of standard SDKs are:

●  OpenWrt (and its offshoot LEDE)

●  Yocto

●  buildroot

●  Android

The additional benefit is that the so-called “scripts to control 
compilation and installation” are all available in the SDK.

Actively Participate in Upstream Projects
Many people are triggered to complain about license compliance 
status if they cannot make things work using standard software. 
Actively participating in upstream projects and supporting hardware 
in “vanilla” projects has two benefits:

1. People will be less likely to complain, since they can simply 
work around any issues. Of course, this is not an excuse to 
not take any other measures for license compliance.

2. People will be more inclined to send a “friendly ping” to point 
out any issues than to complain loudly. Of course, participating 



Practical GPL Compliance: Scenarios for Buying Software	 45

engineers should know what to answer, and how to interact 
with communities at large, and be in sync with other 
departments and players (for example, the legal department).

Some organizations are more than willing to help SoC vendors to 
merge their code upstream and help them become effective open 
source citizens. For the Linux kernel, there is, for example, the 
Long Term Support Initiative (LTSI) run by The Linux Foundation. 
For vendors in the ARM ecosystem, there is also Linaro.

Third Party Audits
It might be useful to let a third party check for any issues in new 
SDKs before they are shipped downstream, and to incorporate 
any findings into the work process. The OpenChain Project (http://
openchainproject.org) is a good start. Another hands-on, practical 
approach to consider is the OSADL License Compliance Audit 
(http://www.osadl.org).

Scenario #2: Supply Chain Solutions  
for ODMs

The Original Design Manufacturers (ODMs) are often in between 
the System on Chip (SoC) vendors and the companies that deliver 
products into the market. They are also the first point of contact 
for companies if something is wrong. As referenced earlier in this 
book, the technical choices made by the SoC vendor has one of 
the biggest impacts on any open source compliance situation. An 
ODM can help pick the right SoC vendor or make sure that any 
(possible) mistakes from SoC vendors do not impact them. Examples 
of actions that an ODM can take are:

1. Work with SoC vendors that use standard SDKs or whose 
chipsets are well supported in standard SDKs (such as 

http://openchainproject.org
http://openchainproject.org
http://www.osadl.org


Practical GPL Compliance: Scenarios for Buying Software	 46

OpenWrt) so the SDK you use is a standard SDK and not 
a SoC-specific SDK.

2. Work with SoC vendors that use a SDK that has been 
certified by the OSADL license compliance audit or similar.

3. Use contracts to push compliance damages to the SoC 
vendor.

4. Actively participate in upstream projects.

5. Let a third party audit a reference design.

Scenario #3: Supply Chain Solutions  
for Others

When procuring devices, there are a few things that can be done 
to reduce compliance risk. 

First and foremost, you can engage with other open source 
stakeholders who are addressing similar challenges. A great place 
to start is the OpenChain Project. OpenChain focuses on identifying 
common best practices in compliance programs that should be 
applied across a supply chain for efficient and effective compliance 
with open source licenses. It provides (free of charge) comprehensive 
specification, conformance, and curriculum material suitable for 
small, medium, and large enterprises. You can learn more at  
www.openchainproject.org.

Here are some direct measures you may wish to consider:

1. Select only ODMs that use a solution from a chipset vendor 
that uses a standard SDK or have replaced the SoC SDK 
with a standard SDK.

2. Explicitly ask for use of a certified/audited SDK.

http://www.openchainproject.org


Practical GPL Compliance: Scenarios for Buying Software	 47

3. Use contracts to push damages upstream.

4. Audit a sample before purchasing, or contract a third party 
to do this.

Doing an audit before a purchase is an interesting strategy to see 
how much risk a certain device will bring with it. This is, however, 
easier said than done. Very few ODMs are prepared to hand out 
samples; even when there are firm orders for tens of thousands 
of devices there are usually only a few samples (one or two) available 
for testing. Before a firm order has been placed, it will be very 
unlikely that an ODM will give out samples, fearing that the device 
will be taken to a cheaper competitor to be cloned.

One solution to this would be to let a third party do an audit and 
send a status report only to the purchaser, who can then use it to 
calculate its risk.



CHAPTER 5:

Building a FOSS 
Code Center
“A common mistake that people make 
when trying to design something 
completely foolproof is to underestimate 
the ingenuity of complete fools.”
 
DOUGLAS ADAMS



Practical GPL Compliance: Building a FOSS Code Center	 49

Context

It is common for companies to have a “FOSS code center” or 
“open source download center” on their website, where users can 
download the (open source) source code for products.

While this delivery system is a great convenience to users, it 
should be noted that the GPLv2 license was drafted in a time 
when broadband connections were extremely rare, and therefore 
the focus of the license is mostly on delivering source code with 
the product or on a physical medium like a CD. In 2017, the 
situation has rapidly changed: Broadband is widely available 
(although it should be noted that there are still many places 
where broadband is rare, or even non-existent) and FOSS code 
centers fulfill all practical needs (namely, access to source code) 
for most people.

Although a FOSS code center could fulfill the requirements of the 
GPLv2 license in certain cases (like firmware updates, where 
providing source code on the same location could then fall under 
“equivalent access” from GPLv2, section 3), it should not be seen 
as a replacement for the traditional compliance methods, but 
instead as a convenience to users.

There are no strict rules when it comes to designing a FOSS code 
center, as every website is different. However, there are a few best 
practices which are mostly non-technical, that are worth following.

“FOSS Code Center” as a Requirement

Many companies have a “FOSS code center” on their website. 
Some of the companies have added this as an afterthought, and 
not as a requirement for the design of the website. And whenever 
there is a new or updated website, the designers often are not 



Practical GPL Compliance: Building a FOSS Code Center	 50

aware of the requirement for a FOSS code center, and it vanishes, 
with the company possibly falling out of compliance.

Keep Firmware and Source Code  
Together

Sometimes FOSS code centers are not in the same place as 
firmware downloads. It might be useful to keep them together so 
it is clear which source code belongs to which firmware. It is 
recommended to at least make a reference to the right place in a 
(separate) FOSS code center from the firmware download page; 
otherwise users might not know where to find the corresponding 
source code and falsely assume that there is no source code, 
which would, of course, cause frustration.



CHAPTER 6:

Tracking Tasks 
and Processes
“Engineers like to solve problems. If 
there are no problems handily available, 
they will create their own problems.” 
 
SCOTT ADAMS



Practical GPL Compliance: Tracking Tasks and Processes	 52

Checklists

A quotation worth bearing in mind with regard to all aspects of 
compliance engineering comes from C. Northcote Parkinson:

“Work expands so as to fill the time available for its completion.”

When used properly, checklists can be a useful way to manage 
your GPL compliance tasks in a quick, consistent, and effective 
manner. When used incorrectly, they can be too general to cover 
the work at hand or become overwhelming catalog requiring 
endless review. A happy medium is the goal. What constitutes a 
happy medium really depends on your organizational size. 

For a small organization, a general compliance checklist could be 
as simple as the following:

General Compliance Checklist

Step #1: Ongoing Compliance Tasks
 Discover all FOSS early in the procurement/development cycle​.

 Review and approve all FOSS packages used.

 Verify the information necessary to satisfy FOSS obligations​.

 Review and approve any outbound contributions to FOSS projects.

Step #2: Support Requirements
 Ensure adequate compliance staffing and designate clear 
lines of responsibility.

 Adapt existing business processes to support the FOSS 
compliance program.

 Make training on the organization’s FOSS policy available to 
everyone​.



Practical GPL Compliance: Tracking Tasks and Processes	 53

 Track progress of all compliance activities​.

This checklist is from the OpenChain Curriculum slides,10 which 
is based, in turn, on the Linux Foundation Open Compliance 
Program Self-Assessment Compliance Checklist.11

You might elect to have more specific checklists to address specific 
compliance goals. For example, the concept of addressing the 
“complete and corresponding” source code for distribution is arguably 
the first and most useful area for which to have a specific checklist. 
One way of approaching this would be to create an exhaustive list of 
all the steps possible and necessary. Another way would be to cover 
the “core” of the issue and leave details to trained personnel or sub-
checklists as needed. What follows is an example of the latter.

Checklist For Rebuilding Product X
This checklist is part of the check-system for ensuring that “complete 
and corresponding” source code is available when distributing 
products containing GPL code.

Step #1
 Is a complete description of the build environment provided?12

Step #2
 Is a list of rebuild steps provided?

Step #3
 Has a rebuild been successfully completed on a clean machine?

10. https://www.openchainproject.org/curriculum
11. https://www.linuxfoundation.org/projects/opencompliance/self-  

  assessment-compliance-checklist
12. This should include package versions and any similar information  

  critical to ensuring compliance.

https://www.openchainproject.org/curriculum
https://www.linuxfoundation.org/projects/opencompliance/self-assessment-compliance-checklist
https://www.linuxfoundation.org/projects/opencompliance/self-assessment-compliance-checklist


Practical GPL Compliance: Tracking Tasks and Processes	 54

Step #4
 Have the rebuild results been verified?

Step #5
 Have any uncertainties been escalated to the Open Source 

support team?

Plenty of options exist for more comprehensive checklists. A great 
place to start is the Open Compliance Program Self-Assessment 
Compliance Checklist. This comprehensive list, which may be 
required for a larger organization, is, like the material above, free 
of charge and freely available, so you can explore what is best to 
meet your requirements.

Flowcharts

One great way to approach the challenge of managing your GPL 
compliance process is to use flowcharts. Like checklists, flowcharts 
can be modest or complex. For various reasons, larger organizations 
tend towards weighty versions of both. You do not need to. C. 
Northcote Parkinson once again has a quote that is applicable in 
our context:

“Expansion means complexity and complexity decay.”

Bearing this in mind, let us take the first steps towards introducing 
simple, clear flowcharts for GPL compliance. 

Professionals in open source governance have been sharing 
suggestions for various flowcharts for years. For example, this 
photo shows Jeremiah Foster of the GENIVI Alliance adding 
thoughts to a distribution flowchart at an interactive session led 
by Armijn Hemel at the Open Compliance Summit 2015 in Japan. 

In this section, we explore some example flowcharts that could 
support practical GPL compliance with minimum fuss and complexity.



Practical GPL Compliance: Tracking Tasks and Processes	 55

To get the ball rolling, we will highlight an older flowchart loosely 
based on work by Arnoud Engelfriet from his tenure as the open 
source counsel at Royal Philips Electronics. He kindly shared his 
approach with Free Software Foundation Europe (FSFE) e.V., a 
charitable organization focused on promoting Free Software/Open 
Source, which then released a modified version to the world through 
inclusion in public presentations.

Flowchart #0 is a great example of what we need to assist our 
work as compliance engineers. It is short, clear, and applicable to 
physically distributed devices. It pre-assumes relatively light and 
responsive infrastructure to support it:

1. An “approved” list of open source licenses.

2. A “rejected” list of open source licenses.

3. A contact in the legal department to deal with any edge cases.

Flowchart #0 was released into the public domain in January 
2008 via FSFE’s legal department — at that time run by Shane 
Coughlan — with the intention of helping to spread knowledge to 
companies of all sizes wondering how best to approach process 
management around open source.

Image by Kate Stewart, The Linux Foundation



Practical GPL Compliance: Tracking Tasks and Processes	 56

After reviewing Flowchart #0, you will find a series of interconnected 
flowcharts prepared by Armijn Hemel to show a more detailed 
process for managing compliance matters. These are not intended 
to be a panacea for open source compliance flowcharting, but 
they do provide a substantial starting point that can be easily 
adopted, adapted, and deployed by organizations of all sizes.



Practical GPL Compliance: Tracking Tasks and Processes	 57

Will code generated 
by the Free Software 

end up in the final 
product?Will the product be 

distributed outside 
of the organisation?

Is the Free Software 
on the ‘Rejected 
Software’ list?

This Free Software 
may not be used for 

this product

Label for “Internal 
use only”

This Free Software 
may be used for this 

product

Please contact the 
legal department to 

obtain approval

Is the Free Software 
on the ‘Approved 

Software’ list?

YES

YES

NO

NO

NO

NO

NO

YES

YES

YES

Will Free Software 
end up in the final 

product?

Flowchart #0: General Approval Flowchart

With thanks �to Royal Philips �Electronics



Practical GPL Compliance: Tracking Tasks and Processes	 58

Flowchart #1: How Do I Distribute?

Read 
Flowchart #2

Read 
Flowchart #3

Read 
Flowchart #4

In a Device? Firmware Update? Over the Air?

What Type of Distribution?



Practical GPL Compliance: Tracking Tasks and Processes	 59

Flowchart #2: Offline Distribution

Code Delivered 
With Product?

Is the Code 
Complete?

Written Offer
Supplied?

Fix
Provide Written 

Offer

License Text 
Supplied?

Provide License
Text

Done!

YES

YESYES

NO

NONO

NOYES



Practical GPL Compliance: Tracking Tasks and Processes	 60

Flowchart #3: Firmware Updates

Firmware co-located 
with source code?

Is the Code 
Complete?

Written Offer
Supplied?

Fix
Provide Written 

Offer

License Text 
Supplied?

Provide License
Text

Done!

YES

YESYES

NO

NONO

NOYES



Practical GPL Compliance: Tracking Tasks and Processes	 61

Flowchart #4: Over The Air

Is the Code 
Complete?

Written Offer
Provided?

Fix

Provide Written 
Offer

License Text 
Supplied?

Provide License
Text

Done!

YES NO

YES

YES

NO

NO



Practical GPL Compliance: Tracking Tasks and Processes	 62

Flowchart #5: LGPL Code

Linking Type?

Provide object files 
of non-LGPL files, 

scripts to relink and 
source of LGPL code

object files of 
non-LGPL files, 

scripts to relink, and 
source of LGPL 
code available?

LGPL source 
code available?

Provide LGPL 
source code

Done!

NO NO

DYNAMIC STATIC

YES YES



Appendices



Practical GPL Compliance: Appendix	 64

13. https://www.linux.com/publications/free-and-open-source-software-  
  compliance-basics-you-must-know

14. https://www.linux.com/publications/free-and-open-source-software-  
  compliance-who-does-what

Appendix 1: The Open  
Compliance Program

Other Open Source Compliance Publications

Free and Open Source Software Compliance:  
The Basics You Must Know13

This paper provides basic discussion on the changing business 
environment moving to a multi-source development model, the 
objectives of compliance, the benefits resulting from having a 
successful compliance program, and much more.

Author: Ibrahim Haddad (Ph.D.), The Linux Foundation

Free and Open Source Software Compliance:  
Who Does What14

Ever since companies started integrating FOSS in their products, 
there has been the need to ensure compliance with applicable 
FOSS licenses. Different companies have used various ways to 
structure their teams responsible for fulfilling this function. Other 
companies have opted for cross-functional teams that include a 
dedicated Open Source Compliance Officer who has access to 
various individuals and teams that contribute to the compliance 
effort without being part of a centralized team. In this paper, we 
examine the latter model of a FOSS compliance team and discuss 
the roles and responsibilities of individuals and teams involved in 
the compliance process.

Author: Ibrahim Haddad (Ph.D.), The Linux Foundation

https://www.linux.com/publications/free-and-open-source-software-compliance-basics-you-must-know
https://www.linux.com/publications/free-and-open-source-software-compliance-basics-you-must-know
https://www.linux.com/publications/free-and-open-source-software-compliance-who-does-what
https://www.linux.com/publications/free-and-open-source-software-compliance-who-does-what


Practical GPL Compliance: Appendix	 65

15. https://www.linux.com/publications/establishing-free-and-open- 
  source-software-compliance-programs-challenges-and-solutions

16. https://www.linux.com/publications/keys-managing-foss-compliance- 
  program

17. https://www.linux.com/publications/five-step-compliance-process- 
  foss-identification-and-review

18. https://www.linux.com/publications/achieving-foss-compliance- 
  enterprise

Establishing Free and Open Source Software Compliance 
Programs: Challenges and Solutions15

This white paper focuses on the practical aspects of ensuring free 
and open source software (FOSS) compliance in the enterprise. 

Author: Ibrahim Haddad (Ph.D.), The Linux Foundation

Keys to Managing a FOSS Compliance Program16

This paper examines the managerial practices needed to plan, 
coordinate, and control a successful compliance program.

Author: Philip Koltun (Ph.D.), The Linux Foundation

A Five-Step Compliance Process for FOSS Identification 
and Review17

This white paper  focuses on the various practical aspects of 
ensuring free and open source software (FOSS) compliance in the 
enterprise. This paper provides a sample five-step compliance 
process for FOSS identification and review. The paper focuses on 
using and integrating FOSS with proprietary and third party source 
code in a commercial product.

Author: Ibrahim Haddad (Ph.D.), The Linux Foundation

Achieving FOSS Compliance in the Enterprise18

This white paper focuses on the various practical aspects of 
ensuring free and open source software (FOSS) compliance in 

https://www.linux.com/publications/establishing-free-and-open-source-software-compliance-programs-challenges-and-solutions
https://www.linux.com/publications/establishing-free-and-open-source-software-compliance-programs-challenges-and-solutions
https://www.linux.com/publications/keys-managing-foss-compliance-program
https://www.linux.com/publications/keys-managing-foss-compliance-program
https://www.linux.com/publications/five-step-compliance-process-foss-identification-and-review
https://www.linux.com/publications/five-step-compliance-process-foss-identification-and-review
https://www.linux.com/publications/achieving-foss-compliance-enterprise
https://www.linux.com/publications/achieving-foss-compliance-enterprise


Practical GPL Compliance: Appendix	 66

the enterprise. This paper examines a sample end-to-end 
compliance process.

Author: Ibrahim Haddad (Ph.D.), The Linux Foundation

FOSS Compliance Practices for Supplied Software19

This white paper examines compliance practices necessary when 
software supplied by a third party vendor is brought into the code 
baseline of a product to be distributed externally. The paper 
discusses requirements a company should impose upon its 
suppliers to disclose FOSS in their deliverables and to provide 
what’s needed to achieve compliance. It also discusses steps a 
company should take to review and validate the FOSS disclosures 
made by its suppliers. In addition to those topics, the white paper 
addresses measures a company can undertake to assess its 
suppliers’ compliance capabilities.

Author: Philip Koltun (Ph.D.), The Linux Foundation

Compliance Templates

Self-Assessment Checklist
The Linux Foundation has compiled this extensive checklist of 
compliance practices found in industry-leading compliance programs. 
Companies can use this checklist as a confidential internal tool to 
assess their progress in implementing a rigorous compliance 
process and to help them prioritize process-improvement efforts. 
The Self-Assessment Checklist is constructed using at least two 
concepts from well-established models of process maturity, such 
as the Software Engineering Institute’s Capability Maturity Model:

●  A distinction should be made between process goals and 
the practices implemented to achieve those goals. The 

19. https://www.linux.com/publications/foss-compliance-practices- 
  supplied-software

https://www.linux.com/publications/foss-compliance-practices-supplied-software
https://www.linux.com/publications/foss-compliance-practices-supplied-software


Practical GPL Compliance: Appendix	 67

compliance checklist explicitly recognizes valid alternative 
practices that may be used to achieve a particular goal.

●  Process adoption progresses from initial process definition 
through institutionalization to a state of controlled process 
management. The goal of a compliance process, as with any 
process, is to achieve consistent and expected business 
results from its use. A checklist of recommended practices 
should prompt companies to assess the extent to which 
they’ve institutionalized compliance actions and to which 
those actions produce needed business results.

Compliance practices included in the checklist will improve the 
effectiveness of compliance programs as well as deliver tangible 
benefits relative to the cost of those practices. A process failure 
modes effects analysis (FMEA) approach has been used to identify 
the ways in which a compliance process can fail and practices to 
prevent those process failures.

Author: The Linux Foundation

Generic FOSS Policy
Companies using FOSS often create a company-wide policy to ensure 
that all staff is informed of how to use FOSS (especially in products), 
to maximize the impact and benefit of using FOSS, and to ensure 
that any technical, legal, or business risks resulting from that usage 
are properly mitigated. This document is a new free resource available 
from the Linux Foundation under the Open Compliance Program. It 
offers a generic FOSS policy that companies can use as starting point 
in creating their own FOSS policy. It provides a template policy that 
focuses on governing FOSS usage in externally distributed products 
and that can be customized to the company’s specific needs.

Author: The Linux Foundation



Practical GPL Compliance: Appendix	 68

Template for an Approval Request Form for the Use of Free 
and Open Source Software
This document is one of the free resources made available by The 
Linux Foundation Open Compliance Program. It offers a template 
for the Approval Request Form used by developers to request 
approval to use Free and Open Source Software (FOSS) in a 
commercial product. The company’s Open Source Review Board 
(OSRB) then reviews the submission and determines approval. In 
most cases, the submission, review, and approval of such requests 
is managed via an online submission system that is part of the 
company’s FOSS compliance management process.

Author: The Linux Foundation

Appendix 2: Compliance Standards

Education and training build a base of knowledgeable resources 
to guide your open source journey. However, these tools alone will 
not solve efficiency issues if everyone implements compliance 
processes differently. The Linux Foundation projects enable the 
industry to develop compliance standards for companies and entire 
supply chains to exchange compliance data in a consistent way.

●  OpenChain identifies common best practices in open source 
compliance that should be applied as a standard across a 
supply chain.20

●  SPDX Specifications enable projects and organizations to 
communicate accurate summaries of the licensing and 
copyright information in software deliverables.21

●  SPDX License List is a curated list of commonly found 
licenses that can be referenced by the use of a standardized 

20. https://www.openchainproject.org
21. https://spdx.org/specifications

https://www.openchainproject.org
https://spdx.org/specifications


Practical GPL Compliance: Appendix	 69

short identifier per license. For each short identifier, the list 
contains the full name for each license, vetted license text, 
other basic information, and a canonical permanent URL 
for each license and exception.22

●  SPDX Meta Tags enable the use of the standardized short 
identifier in source code to efficiently refer to a license without 
having to redundantly reproduce the full license.23

Appendix 3: Professional Networks

You’re not alone in your open source compliance journey. Many 
of our members have found it beneficial to participate in the 
projects we host, simply to access the network of experts 
participating in the projects. In addition, The Linux Foundation 
hosts professional networks to help compliance professionals 
find each other and collaborate on ways to improve compliance 
practices, tooling, and processes.

●  TODO Group24

●  Compliance Directory25

●  OpenChain26

22. https://spdx.org/license-list
23. http://wiki.spdx.org/view/Technical_Team/SPDX_Meta_Tags
24. http://todogroup.org/
25. https://compliance.linuxfoundation.org/references/open-compliance- 

  directory
26. https://www.openchainproject.org

https://spdx.org/license-list
http://wiki.spdx.org/view/Technical_Team/SPDX_Meta_Tags
http://todogroup.org/
https://compliance.linuxfoundation.org/references/open-compliance-directory
https://compliance.linuxfoundation.org/references/open-compliance-directory
https://www.openchainproject.org


Practical GPL Compliance: Appendix	 70

Appendix 4: Tools and Infrastructure

To achieve higher levels of scale and reduce the overhead costs 
of compliance, companies have contributed to creating open 
source tools and infrastructure to achieve compliance at a lower 
cost, increasing not only cross-organization efficiency but also 
integration of compliance with product development.

●  FOSSology scans codebases, identifies licenses in use, 
creates machine readable license lists, and enables automatic 
notice-file creation.27

●  FOSS Bar Code Tracker simplifies the way FOSS components 
are tracked and reported in commercial products. The tool 
allows companies to easily generate  custom QR codes for 
each product containing FOSS. The QR codes contain important 
information about the FOSS stack contained in a product, such 
as component names, version numbers, license information, 
and links to download the source code, among other details.28

●  SPDX Tools are tools for validating, transforming, reading, 
and writing SPDX format files. SPDX Tools also provides 
links to community-maintained and commercially available 
tools that support SPDX.29

●  Dependency Checker is capable of identifying code 
combinations at the dynamic and static link level. The tool 
also offers a license policy framework that enables FOSS 
compliance officers to define combinations of licenses and 
linkage methods that are to be flagged if found as a result 
of running the tool.30

27. https://www.fossology.org/
28. http://git.linuxfoundation.org/?p=foss-barcode.git;a=summary
29. http://spdx.org/tools
30. http://git.linuxfoundation.org/dep-checker.git

https://www.fossology.org/
http://git.linuxfoundation.org/?p=foss-barcode.git;a=summary
http://spdx.org/tools
http://git.linuxfoundation.org/dep-checker.git


Practical GPL Compliance: Appendix	 71

●  The Code Janitor provides linguistic review capabilities 
to make sure developers did not leave comments in the 
source code.31

31. http://git.linuxfoundation.org/janitor.git

http://git.linuxfoundation.org/janitor.git


“So long, and 
thanks for all the 
fish.”
 
DOUGLAS ADAMS



Practical GPL Compliance is a guide for startups, small businesses, and 
engineers tasked with shipping products that contain GNU General Public 
License Version 2 (GPLv2) code. It is directly applicable to consumer electronics, 
drones, IoT, or automotive devices based on generic Linux or Android code-
bases. It provides simple instructions, checklists, and flowcharts that empower 
compliance teams to work with open source as efficiently as possible. 

The goal of this guide is to demystify GPL Compliance Engineering and to make 
it possible for every stakeholder in open source to quickly address common issues. 
The focus is on solving real world challenges in a manner that lays the foundation 
for addressing open source compliance more broadly in organizations of all sizes.

"Today it takes more than simple legal advice to be compliant with the requirements of open source 
licenses. This guide is based on the long-term experience of the authors and represents a unique 
collection of practical information about how to solve the technical challenges compliance engineers 
are facing."
 - Dr. Till Jaeger, Partner at JBB Rechtsanwälte

"Shane Coughlan and Armijn Hemel have created a wonderful resource for anyone working with 
open source software being shipped in a device. They describe in detail how to ensure compliance 
with the various software licenses and communities in which we all rely on."
 - Greg Kroah-Hartman, Linux Kernel Maintainer and Fellow at The Linux Foundation

"Armijn Hemel is the world's foremost expert on the technical aspects of GPL compliance. This book 
is an indispensable starting point for all compliance engineers."
 - Professor Eben Moglen, President and Executive Director at Software Freedom Law Center

“A practical guide with hands-on advice that condenses the significant experience of pioneers in GPL 
compliance who actually made some of the tools of the trade. Given their longstanding and 
recognized experience in compliance this is one of the most keenly awaited texts by compliance 
advisors and in-house officers. I am glad we now have it and that it exceeds my high expectations.”
 - Carlo Piana, Founder at Array Law and General Counsel at Free Software Foundation Europe e.V.

Practical G
PL C

om
pliance  

Arm
ijn Hem

el, M
Sc and Shane Coughlan


