


Rust for Linux:
Code Documentation

& Tests

Miguel Ojeda
ojeda@kernel.org



Recap



        Driver        APIs

Forbidden!

Safe
        Safe Abstractions

Unsafe
...

Rust in the kernel

Subsystem
2

Subsystem
1



Safe and Unsafe (functions)

Safe function: a function that does not trigger undefined behavior in any context and/or 
for any possible inputs.

That is, it does not have any precondition (regarding undefined behavior).

In other words, whatever a caller does, it does not produce undefined behavior.

Unsafe function: a function that is not safe, prefixed with the unsafe keyword.

This means it has safety preconditions.

Callers have to declare they are upholding the contract.



Safe and Unsafe (code)

Unsafe code: code inside an unsafe block.

It has access to all operations.

Safe code: code that is outside an unsafe block (i.e. the default).

It cannot perform some operations (e.g. calling unsafe functions or 
dereferencing raw pointers).

Unsafe block: a block of code prefixed with the unsafe keyword.



Convention

= Safe function

= Unsafe function

= Safe code

= Unsafe code



The deny(unsafe_op_in_unsafe_fn) “dialect”

Kernel code is written in this “dialect”:

pub unsafe fn f() {
    g();            // The default in Rust: unsafe function implies unsafe block.
}

pub unsafe fn f() {
    unsafe { g(); } // Dialect: an explicit unsafe block is needed.
}

This may become the default in a future Rust edition.



Documenting a Rust function



Documenting a Rust function

Let us migrate this C function to Rust and document it:

i32 load(const i32 * p) {
    return *p;
}



In Rust, one may start writing:

pub fn load(p: *const i32) -> i32 {
    *p
}

Documenting a Rust function



We require that all public “items” (functions, types, modules...) must be 
documented.

/// Loads a 32-bit signed integer.
pub fn load(p: *const i32) -> i32 {
    *p
}

Documenting a Rust function



This code does not compile:

/// Loads a 32-bit signed integer.
pub fn load(p: *const i32) -> i32 {
    *p
} error[E0133]: dereference of raw pointer is unsafe

              and requires unsafe block
 --> <source>:2:4
  |
2 |   *p
  |   ^^ dereference of raw pointer
  |
  = note: raw pointers may be null, dangling or unaligned;
    they can violate aliasing rules and cause data races:
    all of these are undefined behavior

Documenting a Rust function



A raw pointer dereference may introduce undefined behavior.

Rust requires an unsafe block.

/// Loads a 32-bit signed integer.
pub fn load(p: *const i32) -> i32 {
    unsafe { *p }
}

Documenting a Rust function



We require to justify why there is no undefined behavior.

For this, we use a // SAFETY: comment.

/// Loads a 32-bit signed integer.
pub fn load(p: *const i32) -> i32 {
    // SAFETY: ...
    unsafe { *p }
}

Documenting a Rust function



One way to justify it is to ask the callers to uphold a precondition.

/// Loads a 32-bit signed integer.
///
/// `p` must be valid, aligned and point to initialized memory.
pub fn load(p: *const i32) -> i32 {
    // SAFETY: ...
    unsafe { *p }
}

Documenting a Rust function



Now we have a precondition that is required to preserve safety.

Functions with safety preconditions are unsafe and must be marked as such.

/// Loads a 32-bit signed integer.
///
/// `p` must be valid, aligned and point to initialized memory.
pub unsafe fn load(p: *const i32) -> i32 {
    // SAFETY: ...
    unsafe { *p }
}

Documenting a Rust function



We require safety preconditions to be written in a # Safety section.

/// Loads a 32-bit signed integer.
///
/// # Safety
///
/// `p` must be valid, aligned and point to initialized memory.
pub unsafe fn load(p: *const i32) -> i32 {
    // SAFETY: ...
    unsafe { *p }
}

Documenting a Rust function



Now we can use the safety precondition to justify the unsafe block.

/// Loads a 32-bit signed integer.
///
/// # Safety
///
/// `p` must be valid, aligned and point to initialized memory.
pub unsafe fn load(p: *const i32) -> i32 {
    // SAFETY: The safety requirements of the function ensure we can
    // dereference and produce a valid value.
    unsafe { *p }
}

Documenting a Rust function



The /// # Safety section

Unsafe functions have safety preconditions that the caller must uphold.

The # Safety section in the documentation of an unsafe function describes 
those safety preconditions (requirements).

For instance, a function that takes a raw pointer and requires it to be valid must 
state so in this section. Callers must comply with it.

They should not be confused with the // SAFETY: comments.

It is also used in unsafe traits to describe requirements for implementers.



The // SAFETY: comments

A // SAFETY: comment must precede every unsafe block.

The comment must explain why the unsafe block does not invoke undefined 
behavior.

For instance, there must be a // SAFETY: comment above a raw pointer 
dereference justifying why the raw pointer is valid and aligned.



For instance, consider:

    /// Returns a string representing the error, if one exists.
    pub fn name(&self) -> Option<&'static CStr> {
        // SAFETY: Just an FFI call, there are no extra safety requirements.
        let ptr = unsafe { bindings::errname(-self.0) };
        if ptr.is_null() {
            None
        } else {
            // SAFETY: The string returned by `errname` is static and `NUL`-terminated.
            Some(unsafe { CStr::from_char_ptr(ptr) })
        }
    }

Other ways of justifying an unsafe block



Type invariants



Assume there exists a print_error() C function.

Let us consider how to justify the following unsafe block:

pub fn print_error(code: i32) {
    // SAFETY: ...
    unsafe { bindings::print_error(code) }
}

Type invariants



First, we create a new type:

/// Represents an error code.
pub struct ErrorCode(i32);

Type invariants



First, we create a new type:

/// Represents an error code.
pub struct ErrorCode(i32);

impl ErrorCode {
// Methods go here.

}

Type invariants



Then, we add a constructor:

/// Represents an error code.
pub struct ErrorCode(i32);

impl ErrorCode {
   /// Creates an [`ErrorCode`] from an error code.
   pub fn from_code(code: i32) -> Result<Self, ()> {
       if code > MAX_ERROR_CODE {
           return Err(());
       }

       Ok(Self(code))
   }
}

Type invariants



If an ErrorCode exists, then the code has to be valid by construction.

/// Represents an error code.
pub struct ErrorCode(i32);

impl ErrorCode {
   /// Creates an [`ErrorCode`] from an error code.
   pub fn from_code(code: i32) -> Result<Self, ()> {
       if code > MAX_ERROR_CODE {
           return Err(());
       }

       Ok(Self(code))
   }
}

Type invariants



We add a method to get back the raw error code:

/// Represents an error code.
pub struct ErrorCode(i32);

impl ErrorCode {
    // ...

    /// Returns the contained error code.
    pub fn to_code(&self) -> i32 {
        self.0
    }
}

Type invariants



We add a method to get back the raw error code:

/// Represents an error code.
pub struct ErrorCode(i32);

impl ErrorCode {
    // ...

    /// Returns the contained error code.
    ///
    /// The result is guaranteed to be a valid error code.
    pub fn to_code(&self) -> i32 {
        self.0
    }
}

Type invariants



Now we can modify our original function to take an ErrorCode instead:

pub fn print_error(code: i32) {
    // SAFETY: ...
    unsafe { bindings::print_error(code) }
}

pub fn print_error(ec: ErrorCode) {
    // SAFETY: ...
    unsafe { bindings::print_error(ec.to_code()) }
}

Type invariants



And write the justification for the unsafe block.

pub fn print_error(code: i32) {
    // SAFETY: ...
    unsafe { bindings::print_error(code) }
}

pub fn print_error(ec: ErrorCode) {
    // SAFETY: The error code returned by `to_code()` is always valid.
    unsafe { bindings::print_error(ec.to_code()) }
}

Type invariants



We say the ErrorCode type maintains an invariant.

We document type invariants in an # Invariants section:

/// Represents a valid error code.
pub struct ErrorCode(i32);

Type invariants



We say the ErrorCode type maintains an invariant.

We document type invariants in an # Invariants section:

/// Represents a valid error code.
///
/// # Invariants
///
/// The error code is within the interval of valid error codes, as defined
/// by specification X.
pub struct ErrorCode(i32);

Type invariants



We also document why invariants are upheld when we create or mutate the state:

impl ErrorCode {
   /// Creates an [`ErrorCode`] from an error code.
   pub fn from_code(code: i32) -> Result<Self, ()> {
       if code > MAX_ERROR_CODE {
           return Err(());
       }

       Ok(Self(code))
   }
}

Type invariants



We also document why invariants are upheld when we create or mutate the state:

impl ErrorCode {
   /// Creates an [`ErrorCode`] from an error code.
   pub fn from_code(code: i32) -> Result<Self, ()> {
       if code > MAX_ERROR_CODE {
           return Err(());
       }

       // INVARIANT: The check above ensures the type invariant holds.
       Ok(Self(code))
   }
}

Type invariants



The /// # Invariants section

Types may have invariants, i.e. properties all objects of that type satisfy.

The # Invariants section in the documentation of a type describes those 
invariants.

For instance, a type that wraps a pointer in a way that it kept always valid should 
document it in this section. Other code can rely on that.

They should not be confused with the // INVARIANT: comments.



The // INVARIANT: comments

An // INVARIANT: comment should be used when object state related to the 
invariant is mutated (including construction).

The comment explains why the type invariant is still preserved.

For instance, when a type with an invariant is constructed, an // INVARIANT: 
comment should precede the statement, explaining why the invariant holds.

It may be used for loop invariants as well.



/// An owned string that is guaranteed to have exactly one `NUL` byte, which is at the end.
///
/// Used for interoperability with kernel APIs that take C strings.
///
/// # Invariants
///
/// The string is always `NUL`-terminated and contains no other `NUL` bytes.
pub struct CString {
    buf: Vec<u8>,
}

impl CString {
    /// Creates an instance of [`CString`] from the given formatted arguments.
    pub fn try_from_fmt(args: fmt::Arguments<'_>) -> Result<Self, Error> {
        // ...

        // INVARIANT: We wrote the `NUL` terminator and checked above that no
        // other `NUL` bytes exist in the buffer.
        Ok(Self { buf })
    }
}

An example from the kernel



impl Deref for CString {
    type Target = CStr;

    fn deref(&self) -> &Self::Target {
        // SAFETY: The type invariants guarantee that the string is
        // `NUL`-terminated and that no other `NUL` bytes exist.
        unsafe { CStr::from_bytes_with_nul_unchecked(self.buf.as_slice()) }
   }
}

An example from the kernel



Writing examples



Writing examples

For instance, consider a data structure:

/// A red-black tree with owned nodes.
///
/// It is backed by the kernel C red-black trees.
///
/// # Invariants
///
/// Non-null parent/children pointers stored in instances of the `rb_node`
/// C struct are always valid, and pointing to a field of our internal
/// representation of a node.
pub struct RBTree<K, V> {
    // ...
}



Writing examples

We want to show how to use the data structure. For that, we add an # Examples section:
/// ...
///
/// # Examples
///
/// In the example below we do several operations on a tree.
/// We note that insertions may fail if the system is out of memory.
///
/// ```
/// # use kernel::prelude::*;
/// use kernel::rbtree::RBTree;
///
/// fn rbtest() -> Result {
///     // Create a new tree.
///     let mut tree = RBTree::new();
///
///     // Insert three elements.
///     tree.try_insert(20, 200)?;
///     tree.try_insert(10, 100)?;
///     tree.try_insert(30, 300)?;
///
/// ...



Writing examples

We can write assertions:
/// ...
///

///     // Check the nodes we just inserted.
///     {
///         let mut iter = tree.iter();
///         assert_eq!(iter.next().unwrap(), (&10, &100));
///         assert_eq!(iter.next().unwrap(), (&20, &200));
///         assert_eq!(iter.next().unwrap(), (&30, &300));
///         assert!(iter.next().is_none());
///     }
///
/// ...



Writing examples

We can write several independent examples:
/// # Examples
///
/// In the example below we do several operations on a tree. We note that insertions may fail if
/// the system is out of memory.
///
/// ```
///    First example...
/// ```
///
/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
/// holding a spinlock.
///
/// ```
///    Second example...
/// ```
///
/// In the example below, we reuse an existing node allocation from an element we removed.
///
/// ```
///    Third example...
/// ```



The /// # Examples section

Function, type, trait, module and crate documentation should contain an # 
Examples section with examples as needed to showcase and clarify their usage.

For instance, a module should provide examples showing the most common use 
cases of its APIs.

It is also useful to show common pitfalls.

Examples double as tests: they are compiled and run (when enabled).



How it looks like





# Safety section.

# Examples section.



Intra-doc links,
automatically generated.



Rust source code view.



Client-side search.





Other notes



Documenting modules

If a module is written in its own file, then we document it inside it using //!:

// SPDX-License-Identifier: GPL-2.0

//! Red-black trees.
//!
//! C header: [`include/linux/rbtree.h`](../../../../include/linux/rbtree.h)
//!
//! Reference: <https://www.kernel.org/doc/html/latest/core-api/rbtree.html>

use crate::{bindings, Result};
use alloc::boxed::Box;
// ...



Other sections

In the standard Rust library, which we use, other fairly common sections are:

# Errors section.

# Panics section.

We may start using these, or new ones, too, as we explore how to best document 
consistently the code.



Writing prose

Feel free to document any item extensively, including writing prose divided with 
extra sections that are not the “standard” ones.

Typically, this applies to modules and types.

For instance, a good example is the documentation for Vec from the standard 
library.

These docs may be enough to replace the usual Documentation/ ones.







Other coding guidelines

No direct access to C bindings.

Rust 2021 edition & idioms.

No undocumented public APIs.

No unneeded panics.

No infallible allocations.

Clippy linting enabled.

Automatic formatting enforced.

...



Useful references

rustdoc guide on writing documentation:

https://doc.rust-lang.org/rustdoc/how-to-write-documentation.html

rustdoc guide on writing documentation tests:

https://doc.rust-lang.org/rustdoc/documentation-tests.html

Rust for Linux coding guidelines:

https://github.com/Rust-for-Linux/linux/blob/rust/Documentation/rust/coding-gu
idelines.rst

https://doc.rust-lang.org/rustdoc/how-to-write-documentation.html
https://doc.rust-lang.org/rustdoc/documentation-tests.html
https://github.com/Rust-for-Linux/linux/blob/rust/Documentation/rust/coding-guidelines.rst
https://github.com/Rust-for-Linux/linux/blob/rust/Documentation/rust/coding-guidelines.rst


Tests



Kinds of tests

In Rust projects, there are usually 3 kinds of tests:

Unit tests (#[test] in the source code).

Documentation tests (e.g. # Examples section).

Integration tests (in a tests/ folder).

We would like to adapt those for the kernel:

We are working on integrating these with KUnit.



Unit tests
#[cfg(test)]
mod tests {
   use super::*;

   #[test]
   fn test_cstr_to_str() {
       let good_bytes = b"\xf0\x9f\xa6\x80\0";
       let checked_cstr = CStr::from_bytes_with_nul(good_bytes).unwrap();
       let checked_str = checked_cstr.to_str().unwrap();
       assert_eq!(checked_str, "🦀");
   }

   #[test]
   #[should_panic]
   fn test_cstr_to_str_panic() {
       let bad_bytes = b"\xc3\x28\0";
       let checked_cstr = CStr::from_bytes_with_nul(bad_bytes).unwrap();
       checked_cstr.to_str().unwrap();
   }
}



CI

The tests are compiled and run in the Rust for Linux CI before merging new code.

Currently, this only tests a few configurations.

Build testing with other configurations was recently added to the 0-DAY CI Kernel 
Test Service.



Conclusions



Conclusions

Rust requires unsafe blocks around potentially-UB operations.

It also provides a way to mark functions that may trigger UB.

On top of that, in Rust for Linux:

Unsafe functions do not imply an unsafe block (unsafe_op_in_unsafe_fn).

Unsafe blocks must be justified (// SAFETY).

Unsafe functions must be marked as such (unsafe).

Safety preconditions must be documented (# Safety).



Conclusions

Type invariants are a key tool to develop APIs with less safety preconditions.

Code documentation does not change the behavior of the code, but:

They make reviewing the soundness of a module easier.

The # Safety sections are critical for users to understand the preconditions.

Writing examples is useful to document, test and make sure the documentation 
stays aligned with the code.

We are working on integrating the testing support with the kernel.



Rust for Linux:
Code Documentation

& Tests

Miguel Ojeda
ojeda@kernel.org



We hope it will be helpful in your journey to learning more about effective and productive 
participation in open source projects. We will leave you with a few additional resources for 
your continued learning:

● The LF Mentoring Program is designed to help new developers with necessary skills 
and resources to experiment, learn and contribute effectively to open source 
communities.

● Outreachy remote internships program supports diversity in open source and free 
software

● Linux Foundation Training offers a wide range of free courses, webinars, tutorials and 
publications to help you explore the open source technology landscape.

● Linux Foundation Events also provide educational content across a range of skill levels 
and topics, as well as the chance to meet others in the community, to collaborate, 
exchange ideas, expand job opportunities and more. You can find all events at 
events.linuxfoundation.org.

Thank you for joining us today!

https://communitybridge.org/
https://www.outreachy.org/
https://training.linuxfoundation.org/
https://training.linuxfoundation.org/resources/?_sft_content_type=free-course
https://events.linuxfoundation.org/
https://events.linuxfoundation.org/


Backup slides



rust/library/

builtins
crate

macros
crate

alloc
crate

kernel
crate

alloc
crate

core
crate

exports helpers

include/

Module

bindgen

bindings
crate

Rust tree Linux tree



(Un)safe functions vs. (un)safe code

Safe function

with only safe code

Safe function

with unsafe code

Unsafe function

with only safe code

Unsafe function

with unsafe code



What happens if we make a mistake?

If a safe function is not actually safe, then it is called unsound.

This is considered a bug.

In the standard library, a CVE is assigned.

fn f(p: *const i32) -> i32 {
    unsafe { *p }
}


