
An Upstream Friendly Source Control
Model And Tooling
adelg@google.com
dylanbhatch@google.com

mailto:adelg@google.com
mailto:dylanbhatch@google.com

Overview

● Kernel development at Google & its issues
● Our solution & its generally applicable themes
● Current progress & Looking forward

Kernel development
at Google

Proprietary + Confidential

Kernel development at Google

● Prodkernel is a fork of the Linux kernel that Google deploys on its production
systems

● It adds about 9000 patches on top of upstream Linux
○ Internal APIs (e.g. SwitchTo for Google Fibers)
○ Hardware support
○ Performance optimizations

● Every ~2 years we rebase all these patches over a ~2 year codebase delta

Kernel development at Google - Why do we have Prodkernel?

● We had internal needs and timelines that necessitated having our own fork of
Linux

● Net: A method to set quality of service for outgoing network traffic
● MM: Specific rules for OOM kills for jobs running in our data center
● Sched: An new API to enable cooperative scheduling in userspace
● Perf: Disabling sampling of the user stack in perf tool due to user privacy

concerns

Problems with the
current process

Proprietary + Confidential

Upstreaming features

Google-made features are developed and tested in Prodkernel, which is up to 2 years
behind upstream. This produces two major hurdles:

● Hurdle 1: Rebasing the feature across a multi year delta to upstream
● Hurdle 2: Re-testing on the newly rebased upstream feature

○ While a feature might have been validated against Google production workloads on the old
upstream base, how does one replicate that on the new upstream base without the rest of
Prodkernel?

Bug discovery

● We operate complex workloads at a very large scale
● This sets us up to discover lots of system bottlenecks, bugs, and deadlocks
● The nature of our rebase means that there is a large delay in discovery,

diagnosis, and sharing of the issue upstream
● Being N majors behind upstream means that the bug we find is also X years old

and we are X years late to presenting the issue to upstream
● By staying on a certain major for an extended period, a bug could be fixed

upstream, but we won’t benefit until we rebase again (or manually find &
backport)

Platforms support & Backporting

● As upstream adds support for new platforms, we need to backport the patches
● This issue is actually generalizable to all backports
● We need to backport over a large delta, and even then, it ends up not being

tested against the same kernel version -- hence bugs we encounter might not
even be applicable to upstream

The Prodkernel Rebase

● Rebasing is extremely costly
● Individual patches must have their conflicts resolved against the new upstream

base
● Entire kernel must be re-qualified against Google’s workloads with the new base
● Dependencies between patches are inconsistently documented, making

parallelization of the rebase effort extremely difficult
● The delay associated with a rebase worsens the aforementioned issues with

upstream participation, which in turn increases the cost of the next rebase.

The Prodkernel Rebase

● Each subsequent Prodkernel rebase increases in number of patches rebased
and time to complete the rebase

● Rather than see when the trendline becomes unsustainable, we want to
proactively reduce our technical debt

● Effectively, reducing our rebase technical debt would have us realize more time
available to spend participating upstream

The Prodkernel Rebase (cont)

● Not only is the upward trend in patches needing to be rebased and time delta
increasing itself

● It also detracts from engineers ability to do anything else (e.g. contribute
upstream)

● Structurally: They work on a years old kernel, this presents the hurdle of a
possibly large rebase on a new feature for upstream

● Practically: Time is taken from an engineer’s finite resources to participate in
rebasing, instead of participating upstream

Generalizing the Issues

● By not being close to upstream we run into two main issues
● We cannot passively benefit from near upstream development
● We cannot contribute to upstream since we are far behind, leading to more

internal patches, which just magnifies this point and the above one

Icebreaker - An
upstream friendly
kernel

Proprietary + Confidential

General themes

● Stay close to upstream -- release a kernel on every major upstream version,
creating a forcing function for developers to stay on board

● Encourage upstream contribution – make it easier for Googlers to participate in
upstream, lessening our out of vanilla tree patches

● Test, test , test – test the kernel in production at a limited capacity, allowing us
to observe bugs earlier and either fix them or ingest a fix from upstream

Why is focusing on these themes important?

● It mainly boils down to upstream engagement
● If our engineers work on a fork that is far from upstream, what benefit does it

bring the engineer or the upstream community to engage
● Engineer develops a feature for our years old kernel, at this point they have a

choice
○ Rebase and upstream it
○ Keep it internal and rebase it later

● Upstreaming it both presents an immediate cost and an uncertain outcome
● The second option, while still having a cost, is delayed and certain

Why are these themes important? (cont)

● Qualification of upstream kernels
● We have lots of machines and a diverse variety of workloads
● Pragmatically, it is not efficient to try and fix every single kernel bug we come

across, we need help from upstream
● Qualifying with upstream kernels helps this issue and also sets us up to be a

better upstream citizen

So how can we take these themes and turn them into a reality?

● There are two aspects to maintaining a kernel tree as it relates to source control
○ Development
○ Upgrading

● Icebreaker’s SCM takes both of these workflows and sets them up for success
with respect to interacting with upstream

● Focuses on making development for upstream easy and keeping code close to
upstream easy

Icebreaker Structure

First, we fork off of an upstream
Linux release.

Icebreaker Structure

We then create feature branches.
Feature branches are a set of
patches on top of vanilla Linux
source that augment the kernel.

Icebreaker Structure

The nice thing about feature
branches is that since they are just
patches on-top of a vanilla kernel,
meaning they can very easily be
upstreamed.

Icebreaker Structure

Development then happens on
these feature branches.

Icebreaker Structure

Feature branches, get merged into
staging branches, based on their
subsystem, for testing.

Icebreaker Structure

Staging branches, get merged into
the next branch for release.

Icebreaker Structure

The next branch “fans-out” to
staging branches post release.

Proprietary + Confidential

● Instead of a rebase, features merge “onto” upstream
major releases, but do not merge LTS releases.

● Conflict resolutions live in the merge commits, and
development commits keep the same stable SHA1 after
upgrading.

● Feature upgrades do not depend on other feature
upgrades to take place.

One Feature Branch,
Many Icebreakers

Proprietary + Confidential

● Bugs can be fixed at the oldest supported version of a
feature, and carried forward to the new ones via merge.

● This way, exactly one buggy SHA1 can be fixed by
exactly one fixup SHA1. A “Fixes: <SHA1>” commit
footer is very meaningful in this context.

● No need to include extra metadata to track patches, even
when supporting multiple versions.

One Feature Branch -- Bug fixes

Back to our themes

● Stay close to upstream -- feature branches can easily be upgraded every kernel
release

● Encourage upstream contribution – feature branches are basically patchsets
● Test, test , test – multiple levels of granularity make it easy to test at different

steps of the proccess

Back to our themes

● Encourage upstream
contribution:

● The separation of features and
relative stability of their
contents make it easier for
developers to upstream

● With git-rerere enabled, setting
up a clean patch series for
upstream can be as simple as
git-rebase

Icebreaker - Tooling

Proprietary + Confidential

Tooling

● In theory, the aforementioned ideas should work
● But there are many steps that need to be taken and it is likely the case the a

developer does not want to be responsible for certain mechanical tasks
● For these process to work we need well oiled automation

Feature branch testing

● When a developer uploads a patch, we automatically run build tests across a
variety of CONFIGs and ARCHs

● We validate the commit message and its metadata
● All of this ensures that if a developer ends up wanting to send a branch

upstream, it is already in a good state

Kernel testing

● Staging branches have a select subset of all our tests run against them
automatically as a smoke test

● This lets the subsystem maintainer have some semblance of confidence in the
health of their subsystem

● Our release branches runs all our tests, and if we find failure, we can bisect back
to the faulty subsystem

● This makes the job of the subsystem maintainer and release manager easy in
that they just have to look at results instead of manually figuring out what to run

Kernel composition

● We have automated rules that merge feature branches into its staging branch
depending on the maintainer preference

● We have a tool to generate and upload proposed “fan-in”s out staging branches
● This automation makes it so that the overhead after committing a patch to

feature branch is minimal

Upgrading the kernel

● We built automation to:
○ Resolve dependencies among feature branches
○ Automatically attempt to upgrade them to the next version

● When combined with our testing automation, we basically get tests on the
proposed upgraded feature branch for free

● When combined with our composition automation, we get combining the feature
branches for free

● Big idea here is to build reusable automation and then chain it

Recap on tooling and themes

● Stay close to upstream -- Upgrade automation makes this easy
● Encourage upstream contribution – Testing at feature branch level with commit

validation also makes this easy
● Test, test, test – Testing at the release branch levels provides another level of

testing before prod

Current status &
Looking forward

Proprietary + Confidential

How is Icebreaker performing?

● We are on Icebreaker 5.15 (at time of writing 5.16 just came out)
● Our time to get from 5.X to 5.X+1 is less than an upstream release cycle,

implying this is sustainable and we actually have wiggle room
● Sustained practice and automation development has yielded quicker and quicker

upgrades despite moving more and more code

Looking forward

● Fully automate everything that is still human based
○ We have some CLI tools, but we want to encapsulate this logic in a persistent job

● Move to testing feature branches atop release candidates, so we can participate
in testing Linus’ release candidates

● Open up the scope of Icebreaker to allow for more upstream development

Takeaways

Proprietary + Confidential

Takeaways

● Stay close to upstream -- Being close to the tip of where everyone else is makes
life easier and is a worthwhile goal despite effort to get there. Automating these
process means you can eventually get close to set and forget.

● Encourage upstream contribution – Make it as easy as possible for developers
to develop for upstream

● Test, test test – Automate testing at all levels. No one wants to manually kick
off tests. Make it so that git push is the last thing you have to type.

Questions

Proprietary + Confidential

