

Unraveling RCU-Usage Mysteries

(Additional Use Cases)

© 2021 Facebook Corporation

Paul E. McKenney, Meta Platforms

Linux Foundation Live Mentorship Series, February 23, 2022

2

RCU Usage: Overview

● Quick Review
● You Are Here
● Use Cases:

– Add-only list, delete-only list, existence guarantee,
type-safe memory, light-weight garbage collector,
quasi reader-writer lock redux, quasi multi-version
concurrency control, and quasi reference count

3

Quick Review [1]

[1] https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/

4

Quick Review

● Global agreement is expensive
– Finite speed of light and non-zero-sized atoms...

● So use both spatial & temporal synchronization
● RCU is one way to do this

– Hazard pointers provide another way

5

Core RCU API: Temporal vs. Spatial

For the full Linux-kernel RCU API as of January 2019: https://lwn.net/Articles/777036/

● rcu_read_lock(): Begin reader

● rcu_read_unlock(): End reader

● synchronize_rcu(): Wait for pre-existing readers

● call_rcu(): Invoke function after pre-existing readers complete

● rcu_dereference(): Load RCU-protected pointer

● rcu_dereference_protected(): Ditto, but update-side locked

● rcu_assign_pointer(): Update RCU-protected pointer

6

RCU Semantics (Graphical)

Free Old Memory

Remove

rcu_read_lock()

rcu_read_unlock()
synchronize_rcu()

[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
[return]

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()

rcu_read_lock()

rcu_read_unlock()

synchronize_rcu()
:::
:::
:::

[return]

Remove

Free Old Memory

Remove

Remove

Free Old Memory

Free Old Memory

Time (really ordering)

7

RCU Semantics (Restrictions)

1. RCU provides ABA protection for update-friendly mechanisms (light-weight garbage collector)
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data

Stale and inconsistent data OK
10

0%
 U

pd
at

es

10
0%

 R
ea

ds

U
p

da
te

-M
o

st
ly

,
N

ee
d

F
re

sh
 C

on
si

st
en

t D
at

a
(R

C
U

 N
ot

 S
o

 G
oo

d
)1

,2

Read-Write,
Need Consistent Data
(RCU Might Be OK)

Read-Mostly,
Need Consistent Data

(RCU Works OK) R
ea

d-
M

os
tly

, S
ta

le
&

 In
co

n
si

st
e

nt
 D

a
ta

 O
K

(R
C

U
 W

o
rk

s
G

re
a

t!!
!)

And RCU is most frequently used for linked data structures.

8

Cost of Global Agreement
Reader

Time

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

A
gr

ee
m

en
t L

at
en

cy

Updater

A
gr

ee
m

en
t L

at
en

cy

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

 Reader

Reader

ReaderR
ea

de
r-

W
rit

er
Lo

ck
in

g

9

RCU vs. Cost of Global Agreement
Reader

Time

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

A
gr

ee
m

en
t L

at
en

cy

Updater

A
gr

ee
m

en
t L

at
en

cy

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

 Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Updater 1

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

 Reader

Reader

Reader

Updater 2

Grace Period

Reader Reader

Reader Reader

Reader

Reader Reader

R
C

U
R

ea
de

r-
W

rit
er

Lo
ck

in
g

10

RCU Semantics (Spatio-Temporal)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock();

Time

re
ad

er
s

G
P

*

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,4437,46

Address Space

curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);

re
ad

er
s

* “Grace Period”

First space/time articulation for RCU (to the best of my knowledge): Jonathan Walpole and his students Josh Triplett and Phil Howard

12

RCU Spatio-Temporal Values
Reader

Time

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

A
gr

ee
m

en
t L

at
en

cy

Updater

A
gr

ee
m

en
t L

at
en

cy

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

 Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Updater 1

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

 Reader

Reader

Reader

Updater 2

Grace Period

Reader Reader

Reader Reader

Reader

Reader Reader

R
C

U
R

ea
de

r-
W

rit
er

Lo
ck

in
g

Old NewEither

13

You Are Here

14

You Are Here

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

15

Add-Only List

16

You Are Here: Add-Only List

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

17

First, Add/Delete List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
 do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

18

Remove Code For Add-Only List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt, true)
 do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

19

Resulting Code For Add-Only List

// Reader
list_for_each_entry_rcu(p, &rl, nxt, true)
 do_something(p);

// Updater
spin_lock(&ml);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);

20

Operation of Add-Only List

A rl

->a=?
->b=?
->c=?

rlrl rl

in
iti

al
iz

at
io

n

km
a

llo
c(

)

lis
t_

ad
d_

rc
u(

)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

lis
t_

fo
r_

e
ac

h_
e

nt
ry

_r
cu

()

Key: Dangerous for updates: all readers can access

Safe for updates: inaccessible to all readers

readerq q q

21

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

22

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Initialization visible to readers: list_for_each_entry_rcu()

Add to list: ml

23

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Initialization visible to readers: list_for_each_entry_rcu()

Add to list: ml

->lock ->lock ->lock

For example, if some of that “other data” is mutable.

24

RCU to Add-Only List

● Add to publish/subscribe for linked structure:
– Nothing at all!!!

25

Delete-Only List

26

You Are Here: Delete-Only List

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

27

Again, Start With Add/Delete List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
 do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

28

Remove Code For Delete-Only List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) // Could use READ_ONCE()
 do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

Why? Maybe you have a system that can remove failing devices, but not add new ones.

29

Resulting Code For Delete-Only List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) // Could use READ_ONCE()
 do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

30

Key: Still dangerous for updates: pre-existing readers can access

Operation of Delete-Only List

A

B

C

rl

cat

Tux

rl

cat

Tux

rl

cat

Tux

rl

Tux

sy
n

ch
ro

ni
ze

_r
cu

()

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers?

kf
re

e(
)

Readers?
Only old ones!

No readers

31

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Prevent compiler from interfering with readers: list_for_each_entry_rcu()

Delete from list: ml

32

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Prevent compiler from interfering with readers: list_for_each_entry_rcu()

Delete from list: ml

->lock ->lock ->lock

For example, if some of that “other data” is mutable.

33

RCU to Delete-Only List

● Remove from existence guarantee
– Publish/subscribe for linked structure

34

Existence Guarantee

35

You Are Here: Existence Guarantee

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

36

Code For Existence Guarantee (Lock)

// Reader-then-updater
rcu_read_lock();
q = NULL;
list_for_each_entry_rcu(p, &rl, nxt)
 if (p->key == key) {
 q = p;
 spin_lock(&q->lock); // RCU provides existence guarantee
 break;
 }
rcu_read_unlock();
if (q) {
 if (!p->deleted)
 do_some_update(p); // Lock protects *p
 spin_unlock(&q->lock);
}

This could be used to implement the aforementioned per-node locking.

37

Code For Existence Guarantee (Lock)

// Updater: List mutation
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
spin_lock(&p->lock);
p->deleted = true;
list_del_rcu(&p->nxt);
spin_unlock(&p->lock);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

38

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Ensure readers see initialization and valid pointers: list_for_each_entry_rcu()

Add to or delete from list: ml

->lock ->lock ->lock

39

Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Ensure readers see initialization and valid pointers: list_for_each_entry_rcu()

Add to or delete from list: ml

->lock ->lock ->lock

The ->lock protects “other data” and prevents the corresponding node from being removed.

40

RCU to Existence Guarantee

● Add to the combination of wait-for-readers and
publish/subscribe for linked structure:
– Heap allocator
– Deferred reclamation

41

Type-Safe Memory

42

You Are Here: Type-Safe Memory

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

43

Type-Safe Memory (TSM)

● Can be freed and reallocated, but its type will
not change: SLAB_TYPESAFE_BY_RCU
– Approximation of “real” TSM

● Provides better cache locality because memory
can be freed and reallocated immediately
– No need to wait for a grace period

● But readers need a validation step

44

TSM State Diagram

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab

45

TSM State Diagram

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab

46

TSM State Diagram

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab

Most types of readers need to stop the churn!

47

TSM Readers Stopping the Churn

● Use a reference counter
● Avoid freed items: atomic_add_unless()
● Avoid reallocated items: Recheck key

Working code available at typesafe.2022.02.22a in -rcu tree kernel/rcu/typesafe.c.

48

Structure and Cache

struct foo {
 struct list_head lh;
 atomic_t ref;
 int key;
};

static struct kmem_cache *foo_cache;

// Create kmem_cache
foo_cache = kmem_cache_create("foo", sizeof(struct foo),
 sizeof(void *), SLAB_TYPESAFE_BY_RCU, NULL);

// Destroy kmem_cache, which finds your memory leaks! ;-)
kmem_cache_destroy(foo_cache);

49

Allocate and Initialize

static struct foo *foo_alloc(int key)
{
 struct foo *p;

 p = kmem_cache_alloc(foo_cache, GFP_KERNEL);
 if (!p)
 return NULL;
 p->key = key;
 atomic_set_release(&p->ref, 1); // Implicit ref for data structure
 return p;
}

50

Reader Tries To Obtain Reference

static struct foo *foo_get_key(int key)
{
 struct foo *p;

 rcu_read_lock();
 p = foo_lookup(key);
 if (!p) {
 } else if (!atomic_add_unless(&p->ref, 1, 0)) {
 p = NULL;
 } else if (p->key != key) {
 foo_put(p);
 p = NULL;
 }
 rcu_read_unlock();
 return p;
}

51

Reader/Remover Releases Reference

static void foo_put(struct foo *p)
{
 if (atomic_dec_and_test(&p->ref)) {
 // Reader attempting to obtain reference will now fail.
 kmem_cache_free(foo_cache, p);
 }
}

52

Why Not Just Use Locking???

53

Why Not Just Use Locking???

● One, kmem_cache_alloc() sometimes
returns uninitialized memory
– So initialization cannot tell whether or not to invoke
spin_lock_init()

● Two, kmem_cache_zalloc() clobbers lock

54

TSM State Diagram Redux

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab

Without kmem_cache_zalloc(), “Init” cannot detect allocation from new slab!!!

No zeroing!

Init

55

Do Readers Really Need Atomics???

56

Do Readers Really Need Atomics???

● Strangely enough, not always!
– But note that the atomics are per-object, not global

● The lifetime of the typesafe item might be
known to be longer than some other object
– Then a reference to that object stabilizes the item
– The ext4 filesystem relies on this, to my surprise [1]
– And thus no atomics for reader validation!

[1] https://lore.kernel.org/lkml/20220209165742.5659-1-quic_qiancai@quicinc.com/ Kudos to Jan Kara

57

RCU to Type-Safe Memory

● Add to the combination of wait-for-readers and
publish/subscribe for linked structure:
– Slab allocator
– Deferred slab reclamation

58

Light-Weight Garbage Collector

59

You Are Here: Light-Weight GC

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

60

RCU: Lightweight GC for NBS

● Many non-blocking algorithms subject to ABA
– Where reallocated memory causes failure
– Example: FIFO single-element push/pop
– (Single-element push with full-stack pop tolerates

ABA-style reallocation)

61

RCU: Lightweight GC for NBS (Code)

struct node_t* top;

void list_push(value_t v)
{
 struct node_t *newnode = malloc(sizeof(*newnode));
 struct node_t *oldtop;

 newnode->val = v;
 oldtop = READ_ONCE(top);
 do {
 newnode->next = oldtop;
 oldtop = cmpxchg(&top, newnode->next, newnode);
 } while (newnode->next != oldtop);
}

62

RCU: Lightweight GC for NBS (Code)
struct node_t *list_pop(void)
{
 struct node_t *oldp;
 struct node_t *p;

 p = READ_ONCE(top);
 do {
 if (!p)
 return NULL;
 oldp = p;
 } while (p = cmpxchg(&top, oldp, READ_ONCE(oldp->next)));
 return oldp;
}

W
hy is

 th
is b

uggy?

63

top

Initial State

cat Tux

64

top

First list_pop() is Preempted

cat Tux

list_pop() 1

oldp

oldp->next

65

top

Second list_pop()

Tux

list_pop() 1

cat

oldp

oldp->next

66

top

Third list_pop()

list_pop() 1

cat

Tuxoldp

oldp->next

67

top

list_push(dog)

list_pop() 1

Tux

dog
(was cat)

oldp

oldp->next

68

top

First list_pop() Resumes

list_pop() 1

Tux

dog
(was cat)

oldp

oldp->next

69

top

First list_pop() Completes

Tux

dog
(was cat)

This is the dreaded ABA problem!

70

top

First list_pop() Completes

Tux

dog
(was cat)

This is the dreaded ABA problem! Prevent this by preventing reallocation of cat...

71

RCU: Lightweight GC for NBS (Code)
struct node_t *list_pop(void)
{
 struct node_t *oldp;
 struct node_t *p;

 rcu_read_lock();
 p = READ_ONCE(top);
 do {
 if (!p) {
 rcu_read_unlock();
 return NULL;
 }
 oldp = p;
 } while (p = cmpxchg(&top, oldp, READ_ONCE(oldp->next)));
 rcu_read_unlock();
 return oldp;
}

Also need to deferred-free nodes popped from the stack.

72

RCU to Light-Weight GC

● Add to type-safe memory:
– Non-blocking synchronization

73

Quasi Reader-Writer Lock (Redux)

74

Quasi Reader-Writer Lock (Redux)

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

75

Read-To-Write Upgrade

76

Read-To-Write Upgrade

● While traversing list, reader sees need to add or
delete a list item

● This self-deadlocks with reader-writer locking
– Deadlocks with special reader-to-writer upgrade

primitives, unless they are conditional
● In which case, reader must handle upgrade failure

● What about RCU?

77

Yet Again, Start With Add/Delete List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
 do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

78

Add Locked Deletion Mid-Traversal

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
 if (p->need_delete) {
 spin_lock(&ml); // No deadlock with rcu_read_lock()
 if (p->need_delete) {
 p->need_delete = false;
 list_del_rcu(p); // Leaves list_head ->next pointer alone
 kfree_rcu(p, rh);
 }
 spin_unlock(&ml);
 }
rcu_read_unlock();

// Updater unchanged

79

Ignore Deleted Item

80

Ignore Deleted Item

● In some cases, doing something with an
already-deleted item is unacceptable
– Poster child: System V IPC
– Can’t allow sending a message on deleted mq!

● How can RCU accommodate this situation?

81

This Time, Start With List Deletion

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
 do_something(p);
rcu_read_unlock();

// Deleter
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

82

Modifications To Deletion

// Deleter
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
spin_lock(&p->lock);
p->deleted = true;
list_del_rcu(&p->nxt);
spin_lock(&p->lock);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

83

Modifications To Reader

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) {
 spin_lock(&p->lock); // Lock item, not search structure
 if (!p->deleted)
 do_something(p);
 spin_lock(&p->lock);
}
rcu_read_unlock();

84

RCU to Quasi Reader-Writer Lock

● Add to existence guarantee:
– RCU readers as read-held reader-writer lock
– Spatial as well as temporal synchronization
– (Optional) Read-to-write upgrade
– (Optional) Bridge to per-object lock or reference
– (Optional) Ignore deleted objects

Much of this was covered in the December 7th talk

85

Quasi MV Consistency Control

86

You Are Here: Quasi MVCC

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

87

Pathname-Lookup Use Case

Hide

88

Pathname-Lookup Use Case

● Given a pathname, find corresponding inode
– Traverse in-memory directory-entry cache
– Do this locklessly, but if something bad happens, fall

back to more heavily synchronized traversal
– “Something bad” might be a path segment not in the

directory-entry cache
– Or...

Neil Brown LWN series: https://lwn.net/Articles/649115/ https://lwn.net/Articles/649729/ https://lwn.net/Articles/650786/

89

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

90

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

91

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

92

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

93

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Meanwhile: “mv /this/pathname /that”

94

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Done: “mv /this/pathname /that”

95

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Meanwhile: “mv /that/thing/might/not /that/pathname/does”

96

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Done: “mv /that/thing/might/not /that/pathname/does”

97

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

98

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

99

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

We have looked up a pathname that never existed!!!

100

How to Avoid This Race Condition?

101

How to Avoid This Race Condition?

● Use sequence locking in conjunction with RCU
– RCU makes the lockless traversal safe
– Sequence locking detects renames

102

Sequence-Locking Core API

● read_seqbegin(): Start reader
● read_seqretry(): End reader and check for retry

– An overlapping seqlock writer will force a retry

● write_seqlock(): Start writer
● write_sequnlock(): End writer

– Renames are seqcount writers

103

Brutally Simplified Pathwalk Code

seq = read_seqbegin(&rename_lock);
rcu_read_lock();

// Traverse the directory-entry cache

if (read_seqretry(&rename_lock, seq))
 goto rename_retry;

rcu_read_unlock(); // Success!

Neil Brown LWN series: https://lwn.net/Articles/649115/ https://lwn.net/Articles/649729/ https://lwn.net/Articles/650786/

104

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

We did two renames during the pathname lookup, so ...

105

Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

… those renames invalidate the pathname lookup!!!

read_seqretry()

106

Restore Consistency To RCU Readers

● RCU makes traversal safe
● Seqlock rejects inconsistent traversals
● This simply identifies a version

– More complex schemes can allow concurrent
traversals of different versions

Kudos: Manish Soni, Nick Piggin, Al Viro. Christoph Hellwig. Neil Brown.

107

RCU to Quasi MVCC

● Add to existence guarantee:
– Readers include some sort of snapshot operation
– Constraints on readers and writers:

● Single object,
● Sequence locks,
● Version number(s),
● Issaquah challenge, ...

108

Quasi Reference Count

109

You Are Here: Quasi Reference Count

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

110

Quasi Reference Count

● Per-item reference count:
– rcu_dereference() obtains reference limited to

the enclosing RCU read-side critical section

● Bulk reference count:
– rcu_read_lock() obtains reference on all RCU-

protected objects in the system, again limited to the
enclosing RCU read-side critical section

111

Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as

quasi reference counting

112

Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as

quasi reference counting

● How can the same code be existence locking,
quasi reader-writer locking, … ???

113

Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as

quasi reference counting

● How can the same code be existence locking,
quasi reader-writer locking, … ???

● What does atomic_inc() do?

114

Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as

quasi reference counting

● How can the same code be existence locking,
quasi reader-writer locking, … ???

● What does atomic_inc() do?
– Lots of things!!!

115

Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as

quasi reference counting

● How can the same code be existence locking,
quasi reader-writer locking, … ???

● What does atomic_inc() do?
– Lots of things!!! Just like RCU!

116

RCU to Quasi Reference Count

● Add to existence guarantee:
– RCU readers as individual or bulk unconditional

reference-count acquisitions
– (Optional) Bridge to per-object lock or reference

117

You Are Here

118

You Are Here

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

119

RCU Area of Applicability (Redux)

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data

Stale and inconsistent data OK
10

0%
 U

pd
at

es

10
0%

 R
ea

ds

U
p

d
a

te
-M

o
st

ly
, N

e
e

d
F

re
sh

 C
o

ns
is

te
nt

 D
a

ta
(R

C
U

 N
o

t
S

o
G

oo
d

)1,
2

Read-Write,
Need Consistent Data
(RCU Might Be OK)

Read-Mostly,
Need Consistent Data

(RCU Works OK) R
ea

d
-M

o
st

ly
, S

ta
le

&
 In

co
ns

is
te

nt
 D

a
ta

 O
K

(R
C

U
 W

or
ks

 G
re

a
t!!

!)

120

Summary

121

Summary

● RCU synchronizes in space as well as time
– But the time and space aspects are deeply intertwined
– Enables near-zero-cost read-side synchronization

● Several additional example RCU use cases:
– Add-only list, delete-only list, existence guarantee, type-safe memory,

light-weight garbage collector, quasi reader-writer lock redux, quasi
multi-version concurrency control, and quasi reference count

122

Summary

● RCU synchronizes in space as well as time
– But the time and space aspects are deeply intertwined
– Enables near-zero-cost read-side synchronization

● Several additional example RCU use cases:
– Add-only list, delete-only list, existence guarantee, type-safe memory,

light-weight garbage collector, quasi reader-writer lock redux, quasi
multi-version concurrency control, and quasi reference count

● RCU’s dirty little secret:
– RCU is dead simple

123

Summary

● RCU synchronizes in space as well as time
– But the time and space aspects are deeply intertwined
– Enables near-zero-cost read-side synchronization

● Several additional example RCU use cases:
– Add-only list, delete-only list, existence guarantee, type-safe memory,

light-weight garbage collector, quasi reader-writer lock redux, quasi
multi-version concurrency control, and quasi reference count

● RCU’s dirty little secret:
– RCU is dead simple, but in order to make good used of it, you must

change the way that you think about your problem

124

Summary

● “I hear and I forget.”

● “I see and I remember.”

● “I do and I understand.”

● To really understand RCU, play with it.

125

We Are Here And Done!!!

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish

126

For More Information
● Part 1: https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/

● “RCU Usage In the Linux Kernel: One Decade Later”:
– http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf
– http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf
– 2020 update: https://dl.acm.org/doi/10.1145/3421473.3421481

● “Structured Deferral: Synchronization via Procrastination”: http://doi.acm.org/10.1145/2488364.2488549

● Linux-kernel RCU API, 2019 Edition: https://lwn.net/Articles/777036/

● “Stupid RCU Tricks: So you want to torture RCU?”: https://paulmck.livejournal.com/61432.html

● Documentation/RCU/* in kernel source

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”, “Deferred Processing” chapter:
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

● Folly-library RCU implementation (also C-language user-space RCU)

● Large piles of information: http://www.rdrop.com/~paulmck/RCU/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126

