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RCU Usage: Overview

● Quick Review
● You Are Here
● Use Cases:

– Add-only list, delete-only list, existence guarantee, 
type-safe memory, light-weight garbage collector, 
quasi reader-writer lock redux, quasi multi-version 
concurrency control, and quasi reference count
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Quick Review [1]

[1] https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/
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Quick Review

● Global agreement is expensive
– Finite speed of light and non-zero-sized atoms...

● So use both spatial & temporal synchronization
● RCU is one way to do this

– Hazard pointers provide another way
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Core RCU API: Temporal vs. Spatial

For the full Linux-kernel RCU API as of January 2019: https://lwn.net/Articles/777036/

● rcu_read_lock(): Begin reader

● rcu_read_unlock(): End reader

● synchronize_rcu(): Wait for pre-existing readers

● call_rcu(): Invoke function after pre-existing readers complete

● rcu_dereference(): Load RCU-protected pointer

● rcu_dereference_protected(): Ditto, but update-side locked

● rcu_assign_pointer(): Update RCU-protected pointer
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RCU Semantics (Graphical)

Free Old Memory

Remove

rcu_read_lock()
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[return]
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RCU Semantics (Restrictions)

1. RCU provides ABA protection for update-friendly mechanisms (light-weight garbage collector)
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data
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And RCU is most frequently used for linked data structures.
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Cost of Global Agreement
Reader

Time

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

A
gr

ee
m

en
t L

at
en

cy

Updater

A
gr

ee
m

en
t L

at
en

cy

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

Reader

     Reader

Reader

ReaderR
ea

de
r-

W
rit

er
Lo

ck
in

g



9

RCU vs. Cost of Global Agreement
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RCU Semantics (Spatio-Temporal)

rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (37)
*cur_b = mcp->b; (46)
rcu_read_unlock();

Time
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rcu_read_lock();
mcp = ...;
*cur_a = mcp->a; (39)
*cur_b = mcp->b; (44)
rcu_read_unlock();

39,4437,46

Address Space

curconfig

mcp = kmalloc(...)
mcp = xchg(&curconfig, mcp);
synchronize_rcu();
...
...
kfree(mcp);
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* “Grace Period”

First space/time articulation for RCU (to the best of my knowledge): Jonathan Walpole and his students Josh Triplett and Phil Howard
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RCU Spatio-Temporal Values
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You Are Here
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You Are Here

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Add-Only List
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You Are Here: Add-Only List

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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First, Add/Delete List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
    do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Remove Code For Add-Only List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt, true)
    do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Resulting Code For Add-Only List

// Reader
list_for_each_entry_rcu(p, &rl, nxt, true)
    do_something(p);

// Updater
spin_lock(&ml);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
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Operation of Add-Only List
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Safe for updates: inaccessible to all readers

readerq q q



21

Synchronization Responsibilities
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Synchronization Responsibilities

->next
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->lock
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data

Initialization visible to readers: list_for_each_entry_rcu()

Add to list: ml
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Synchronization Responsibilities

->next

->prev

->lock

Other
data

->next

->prev

->next

->prev

->lock

Other
data

->next

->prev

->lock

Other
data

Initialization visible to readers: list_for_each_entry_rcu()

Add to list: ml

->lock ->lock ->lock

For example, if some of that “other data” is mutable.
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RCU to Add-Only List

● Add to publish/subscribe for linked structure:
– Nothing at all!!!



25

Delete-Only List
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You Are Here: Delete-Only List

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Again, Start With Add/Delete List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
    do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Remove Code For Delete-Only List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) // Could use READ_ONCE()
    do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);

Why?  Maybe you have a system that can remove failing devices, but not add new ones.
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Resulting Code For Delete-Only List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) // Could use READ_ONCE()
    do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Key: Still dangerous for updates: pre-existing readers can access

Operation of Delete-Only List
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Synchronization Responsibilities
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Synchronization Responsibilities
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For example, if some of that “other data” is mutable.
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RCU to Delete-Only List

● Remove from existence guarantee
– Publish/subscribe for linked structure
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Existence Guarantee
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You Are Here: Existence Guarantee

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Code For Existence Guarantee (Lock)

// Reader-then-updater
rcu_read_lock();
q = NULL;
list_for_each_entry_rcu(p, &rl, nxt)
    if (p->key == key) {
        q = p;
        spin_lock(&q->lock);  // RCU provides existence guarantee
        break;
    }
rcu_read_unlock();
if (q) {
    if (!p->deleted)
        do_some_update(p);  // Lock protects *p
    spin_unlock(&q->lock);
}

This could be used to implement the aforementioned per-node locking.
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Code For Existence Guarantee (Lock)

// Updater: List mutation
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
spin_lock(&p->lock);
p->deleted = true;
list_del_rcu(&p->nxt);
spin_unlock(&p->lock);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Synchronization Responsibilities
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Ensure readers see initialization and valid pointers: list_for_each_entry_rcu()

Add to or delete from list: ml

->lock ->lock ->lock
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Synchronization Responsibilities
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Ensure readers see initialization and valid pointers: list_for_each_entry_rcu()

Add to or delete from list: ml

->lock ->lock ->lock

The ->lock protects “other data” and prevents the corresponding node from being removed.
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RCU to Existence Guarantee

● Add to the combination of wait-for-readers and 
publish/subscribe for linked structure:
– Heap allocator
– Deferred reclamation
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Type-Safe Memory
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You Are Here: Type-Safe Memory

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Type-Safe Memory (TSM)

● Can be freed and reallocated, but its type will 
not change: SLAB_TYPESAFE_BY_RCU
– Approximation of “real” TSM

● Provides better cache locality because memory 
can be freed and reallocated immediately
– No need to wait for a grace period

● But readers need a validation step
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TSM State Diagram

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab
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TSM State Diagram

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab
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TSM State Diagram

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab

Most types of readers need to stop the churn!
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TSM Readers Stopping the Churn

● Use a reference counter
● Avoid freed items: atomic_add_unless()
● Avoid reallocated items: Recheck key

Working code available at typesafe.2022.02.22a in -rcu tree kernel/rcu/typesafe.c. 
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Structure and Cache

struct foo {
    struct list_head lh;
    atomic_t ref;
    int key;
};

static struct kmem_cache *foo_cache;

// Create kmem_cache
foo_cache = kmem_cache_create("foo", sizeof(struct foo),
                              sizeof(void *), SLAB_TYPESAFE_BY_RCU, NULL);

// Destroy kmem_cache, which finds your memory leaks!  ;-)
kmem_cache_destroy(foo_cache);
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Allocate and Initialize

static struct foo *foo_alloc(int key)
{
    struct foo *p;

    p = kmem_cache_alloc(foo_cache, GFP_KERNEL);
    if (!p)
        return NULL;
    p->key = key;
    atomic_set_release(&p->ref, 1);  // Implicit ref for data structure
    return p;
}
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Reader Tries To Obtain Reference

static struct foo *foo_get_key(int key)
{
    struct foo *p;

    rcu_read_lock();
    p = foo_lookup(key);
    if (!p) {
    } else if (!atomic_add_unless(&p->ref, 1, 0)) {
        p = NULL;
    } else if (p->key != key) {
        foo_put(p);
        p = NULL;
    }
    rcu_read_unlock();
    return p;
}
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Reader/Remover Releases Reference

static void foo_put(struct foo *p)
{
    if (atomic_dec_and_test(&p->ref)) {
        // Reader attempting to obtain reference will now fail.
        kmem_cache_free(foo_cache, p);
    }
}
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Why Not Just Use Locking???
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Why Not Just Use Locking???

● One, kmem_cache_alloc() sometimes 
returns uninitialized memory
– So initialization cannot tell whether or not to invoke 
spin_lock_init()

● Two, kmem_cache_zalloc() clobbers lock
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TSM State Diagram Redux

In Use
SLAB_TYPESAFE_BY_RCU

Slab cache
Free Pages

kmem_cache_free() Empty Slab RCU Grace Period

kmem_cache_alloc() New Slab

Without kmem_cache_zalloc(), “Init” cannot detect allocation from new slab!!!

No zeroing!

Init
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Do Readers Really Need Atomics???
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Do Readers Really Need Atomics???

● Strangely enough, not always!
– But note that the atomics are per-object, not global

● The lifetime of the typesafe item might be 
known to be longer than some other object
– Then a reference to that object stabilizes the item
– The ext4 filesystem relies on this, to my surprise [1]
– And thus no atomics for reader validation!

[1] https://lore.kernel.org/lkml/20220209165742.5659-1-quic_qiancai@quicinc.com/  Kudos to Jan Kara
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RCU to Type-Safe Memory

● Add to the combination of wait-for-readers and 
publish/subscribe for linked structure:
– Slab allocator
– Deferred slab reclamation
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Light-Weight Garbage Collector
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You Are Here: Light-Weight GC

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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RCU: Lightweight GC for NBS

● Many non-blocking algorithms subject to ABA
– Where reallocated memory causes failure
– Example: FIFO single-element push/pop
– (Single-element push with full-stack pop tolerates 

ABA-style reallocation)
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RCU: Lightweight GC for NBS (Code)

struct node_t* top;

void list_push(value_t v)
{ 
    struct node_t *newnode = malloc(sizeof(*newnode));
    struct node_t *oldtop;

    newnode->val = v;
    oldtop = READ_ONCE(top);
    do {
        newnode->next = oldtop; 
        oldtop = cmpxchg(&top, newnode->next, newnode); 
    } while (newnode->next != oldtop);
}
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RCU: Lightweight GC for NBS (Code)
struct node_t *list_pop(void)
{
    struct node_t *oldp;
    struct node_t *p;

    p = READ_ONCE(top);
    do {
        if (!p)
            return NULL;
        oldp = p;
    } while (p = cmpxchg(&top, oldp, READ_ONCE(oldp->next)));
    return oldp;
}

W
hy is

 th
is b

uggy?
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top

Initial State

cat Tux
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top

First list_pop() is Preempted

cat Tux

list_pop() 1

oldp

oldp->next
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top

Second list_pop()

Tux

list_pop() 1

cat

oldp

oldp->next
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top

Third list_pop()

list_pop() 1

cat

Tuxoldp

oldp->next
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top

list_push(dog)

list_pop() 1

Tux

dog
(was cat)

oldp

oldp->next
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top

First list_pop() Resumes

list_pop() 1

Tux

dog
(was cat)

oldp

oldp->next
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top

First list_pop() Completes

Tux

dog
(was cat)

This is the dreaded ABA problem!
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top

First list_pop() Completes

Tux

dog
(was cat)

This is the dreaded ABA problem!  Prevent this by preventing reallocation of cat...
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RCU: Lightweight GC for NBS (Code)
struct node_t *list_pop(void)
{
    struct node_t *oldp;
    struct node_t *p;

    rcu_read_lock();
    p = READ_ONCE(top);
    do {
        if (!p) {
            rcu_read_unlock();
            return NULL;
        }
        oldp = p;
    } while (p = cmpxchg(&top, oldp, READ_ONCE(oldp->next)));
    rcu_read_unlock();
    return oldp;
}

Also need to deferred-free nodes popped from the stack.
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RCU to Light-Weight GC

● Add to type-safe memory:
– Non-blocking synchronization
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Quasi Reader-Writer Lock (Redux)
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Quasi Reader-Writer Lock (Redux)

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Read-To-Write Upgrade
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Read-To-Write Upgrade

● While traversing list, reader sees need to add or 
delete a list item

● This self-deadlocks with reader-writer locking
– Deadlocks with special reader-to-writer upgrade 

primitives, unless they are conditional
● In which case, reader must handle upgrade failure

● What about RCU?
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Yet Again, Start With Add/Delete List

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
    do_something(p);
rcu_read_unlock();

// Updater
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
list_add_rcu(&q->nxt, &rl);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Add Locked Deletion Mid-Traversal

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
    if (p->need_delete) {
        spin_lock(&ml);  // No deadlock with rcu_read_lock()
        if (p->need_delete) {
            p->need_delete = false;
            list_del_rcu(p); // Leaves list_head ->next pointer alone
            kfree_rcu(p, rh);
        }
        spin_unlock(&ml);
    }
rcu_read_unlock();

// Updater unchanged
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Ignore Deleted Item
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Ignore Deleted Item

● In some cases, doing something with an 
already-deleted item is unacceptable
– Poster child: System V IPC
– Can’t allow sending a message on deleted mq!

● How can RCU accommodate this situation?
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This Time, Start With List Deletion

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt)
    do_something(p);
rcu_read_unlock();

// Deleter
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
list_del_rcu(&p->nxt);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Modifications To Deletion

// Deleter
spin_lock(&ml);
p = list_first_entry(&rl, struct foo, nxt);
spin_lock(&p->lock);
p->deleted = true;
list_del_rcu(&p->nxt);
spin_lock(&p->lock);
spin_unlock(&ml);
synchronize_rcu();
kfree(p);
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Modifications To Reader

// Reader
rcu_read_lock();
list_for_each_entry_rcu(p, &rl, nxt) {
    spin_lock(&p->lock); // Lock item, not search structure
    if (!p->deleted)
        do_something(p);
    spin_lock(&p->lock);
}
rcu_read_unlock();
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RCU to Quasi Reader-Writer Lock

● Add to existence guarantee:
– RCU readers as read-held reader-writer lock
– Spatial as well as temporal synchronization
– (Optional) Read-to-write upgrade
– (Optional) Bridge to per-object lock or reference
– (Optional) Ignore deleted objects

Much of this was covered in the December 7th talk
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Quasi MV Consistency Control
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You Are Here: Quasi MVCC

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Pathname-Lookup Use Case

Hide
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Pathname-Lookup Use Case

● Given a pathname, find corresponding inode
– Traverse in-memory directory-entry cache
– Do this locklessly, but if something bad happens, fall 

back to more heavily synchronized traversal
– “Something bad” might be a path segment not in the 

directory-entry cache
– Or...

Neil Brown LWN series: https://lwn.net/Articles/649115/ https://lwn.net/Articles/649729/ https://lwn.net/Articles/650786/
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname
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exist

that

thing

might

not

exist
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Meanwhile: “mv /this/pathname /that”
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this
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Done: “mv /this/pathname /that”
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Meanwhile: “mv /that/thing/might/not /that/pathname/does”
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

Done: “mv /that/thing/might/not /that/pathname/does”
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

We have looked up a pathname that never existed!!!
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How to Avoid This Race Condition?
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How to Avoid This Race Condition?

● Use sequence locking in conjunction with RCU
– RCU makes the lockless traversal safe
– Sequence locking detects renames
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Sequence-Locking Core API

● read_seqbegin(): Start reader
● read_seqretry(): End reader and check for retry

– An overlapping seqlock writer will force a retry

● write_seqlock(): Start writer
● write_sequnlock(): End writer

– Renames are seqcount writers
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Brutally Simplified Pathwalk Code

seq = read_seqbegin(&rename_lock);
rcu_read_lock();

// Traverse the directory-entry cache

if (read_seqretry(&rename_lock, seq))
        goto rename_retry;

rcu_read_unlock(); // Success!

Neil Brown LWN series: https://lwn.net/Articles/649115/ https://lwn.net/Articles/649729/ https://lwn.net/Articles/650786/
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that
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might

not

exist

We did two renames during the pathname lookup, so ...
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Pathname Lookup and Renames
Looking up: “/this/pathname/does/not/exist”

this

pathname

does

exist

that

thing

might

not

exist

… those renames invalidate the pathname lookup!!!

read_seqretry()
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Restore Consistency To RCU Readers

● RCU makes traversal safe
● Seqlock rejects inconsistent traversals
● This simply identifies a version

– More complex schemes can allow concurrent 
traversals of different versions

Kudos: Manish Soni, Nick Piggin, Al Viro.  Christoph Hellwig.  Neil Brown.
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RCU to Quasi MVCC

● Add to existence guarantee:
– Readers include some sort of snapshot operation
– Constraints on readers and writers:

● Single object,
● Sequence locks,
● Version number(s),
● Issaquah challenge, ...
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Quasi Reference Count
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You Are Here: Quasi Reference Count

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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Quasi Reference Count

● Per-item reference count:
– rcu_dereference() obtains reference limited to 

the enclosing RCU read-side critical section

● Bulk reference count:
– rcu_read_lock() obtains reference on all RCU-

protected objects in the system, again limited to the 
enclosing RCU read-side critical section
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Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as 

quasi reference counting
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Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as 

quasi reference counting

● How can the same code be existence locking, 
quasi reader-writer locking, … ???

● What does atomic_inc() do?
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Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as 

quasi reference counting

● How can the same code be existence locking, 
quasi reader-writer locking, … ???

● What does atomic_inc() do?
– Lots of things!!!
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Quasi Reference Count (Code)

● You have already seen it!
– Many of the earlier examples can be interpreted as 

quasi reference counting

● How can the same code be existence locking, 
quasi reader-writer locking, … ???

● What does atomic_inc() do?
– Lots of things!!!  Just like RCU!
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RCU to Quasi Reference Count

● Add to existence guarantee:
– RCU readers as individual or bulk unconditional 

reference-count acquisitions
– (Optional) Bridge to per-object lock or reference
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You Are Here
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You Are Here

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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RCU Area of Applicability (Redux)

1. RCU provides ABA protection for update-friendly mechanisms
2. RCU provides bounded wait-free read-side primitives for real-time use

Need fully fresh and consistent data

Stale and inconsistent data OK
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Summary

● RCU synchronizes in space as well as time
– But the time and space aspects are deeply intertwined
– Enables near-zero-cost read-side synchronization

● Several additional example RCU use cases:
– Add-only list, delete-only list, existence guarantee, type-safe memory, 

light-weight garbage collector, quasi reader-writer lock redux, quasi 
multi-version concurrency control, and quasi reference count
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Summary

● RCU synchronizes in space as well as time
– But the time and space aspects are deeply intertwined
– Enables near-zero-cost read-side synchronization

● Several additional example RCU use cases:
– Add-only list, delete-only list, existence guarantee, type-safe memory, 

light-weight garbage collector, quasi reader-writer lock redux, quasi 
multi-version concurrency control, and quasi reference count

● RCU’s dirty little secret:
– RCU is dead simple, but in order to make good used of it, you must 

change the way that you think about your problem
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Summary

● “I hear and I forget.”

● “I see and I remember.”

● “I do and I understand.”

● To really understand RCU, play with it.
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We Are Here And Done!!!

Quasi Reader-Writer Lock Quasi Reference Count

Quasi Multi-Version Consistency Control

Light-Weight Garbage Collector Delete-Only List

Add-Only List Type-Safe Memory

Linked Publish/Subscribe

Existence Guarantee

Phased State Change

Wait To Finish
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For More Information
● Part 1: https://www.linuxfoundation.org/webinars/unraveling-rcu-usage-mysteries/

● “RCU Usage In the Linux Kernel: One Decade Later”:
– http://www.rdrop.com/~paulmck/techreports/survey.2012.09.17a.pdf 
– http://www.rdrop.com/~paulmck/techreports/RCUUsage.2013.02.24a.pdf 
– 2020 update: https://dl.acm.org/doi/10.1145/3421473.3421481 

● “Structured Deferral: Synchronization via Procrastination”: http://doi.acm.org/10.1145/2488364.2488549 

● Linux-kernel RCU API, 2019 Edition: https://lwn.net/Articles/777036/ 

● “Stupid RCU Tricks: So you want to torture RCU?”: https://paulmck.livejournal.com/61432.html 

● Documentation/RCU/* in kernel source

● “Is Parallel Programming Hard, And, If So, What Can You Do About It?”, “Deferred Processing” chapter: 
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html 

● Folly-library RCU implementation (also C-language user-space RCU)

● Large piles of information: http://www.rdrop.com/~paulmck/RCU/
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