
eBPF

Security Threat Model

Jack Kelly, James Callaghan & Andrew Martin

control-plane.io

http://control-plane.io


Driving the Technical Direction and Vision
of eBPF

The eBPF Foundation focuses on advancing the state of the art for eBPF by directing
upstream development, promoting the use of the technology and its benefits, and
improving the security and robustness of eBPF as a whole.

ControlPlane is a cloud native security consultancy, unlocking next-generation
technologies for regulated industries including Tier 1 banks and national
governments. Headquartered in London, UK with presences in North America and
Australasia, their 60 staff across 12 countries assure some of the world’s most secure
organisations.

Members

Platinum Silver

© controlplane 2024 2



Driving the Technical Direction and Vision of eBPF 2
Members 2

Introduction 4
Document Purpose 4
Scope 4
Document Structure 4

Background 6
eBPF Technical Overview 6
eBPF Helper Functions of Interest to Threat Actors 8

Data Flow Diagrams (DFDs) 9
High-Level eBPF DFD 9
DFDs for different eBPF use cases 9

Threat Model 12
Threat Model Scope 12
Attack trees 13

Confidentiality and Integrity 13
Availability 14
Evade Security Tooling 15

Mitigating Controls and Recommendations 17
Detailed Threats and Controls 20
Conclusions 27
Appendix 28

Kernel Changes of Note 28
References 29

© controlplane 2024 3



Introduction

Document Purpose
This document was commissioned by the eBPF Foundation to provide security
information and guidance to large enterprises using or looking to adopt
eBPF-based tools. The goal of the paper is to promote the security benefits of
eBPF over traditional tooling, whilst raising awareness of potential risks that could
arise in common use cases.

A Threat Modelling approach is taken to outline eBPF’s defences through an
attacker’s lens, highlighting inherent controls built into eBPF which ensure code
runs safely and securely at the kernel level. As with any technology, it is not
possible to prevent all threats using built-in controls. Where this is the case,
end-user recommendations and awareness statements are provided. This
approach will allow anyone looking to adopt eBPF solutions to make effective,
risk-based architecture and deployment decisions, and to enhance the security of
their systems by extending this threat model for their organisation.

Scope
eBPF was originally created for the Linux Kernel, so this whitepaper assumes that
all compute instances are running Linux-based operating systems. eBPF
implementations outside of the Linux kernel are beyond the scope of this threat
model.

The pace of innovation and change in the eBPF ecosystem is rapid, therefore new
controls against some of the threats presented here may be developed in the
future. New eBPF developments can be followed via ebpf.io and ebpf.foundation,
and Linux kernel changes which have affected this document are recorded in the
Kernel changes of note appendix.

Document Structure
The Threat Modelling approach applied here is structured around Shostack’s four
questions:

1. What are we building? This involves understanding what eBPF is, and
how eBPF programs work.

2. What can go wrong? Following the definition of a simple, high-level
scenario in the Threat Model Scope, we develop attack trees to explore how
an attacker could utilise eBPF for nefarious purposes.

© controlplane 2024 4

https://ebpf.foundation/
https://ebpf.io/
http://ebpf.foundation
https://github.com/adamshostack/4QuestionFrame
https://github.com/adamshostack/4QuestionFrame


3. What can we do about the things that can go wrong? Once a list of
threats has been established, inherent eBPF controls and end-user
recommendations are mapped against them.

4. Are we doing a good job? Finally, the threat model's outcomes are
reviewed to provide practical guidance for eBPF adopters.

In accordance with this blueprint, the rest of the paper is structured as follows:

1. The remainder of the introduction introduces the basic concepts of eBPF,
examines some common use cases, and starts to introduce properties
which may be of interest to an attacker. In the context of the threat
modelling framework, this section serves to answer the question of ‘what
are we building?’

2. The Threat Model section answers the question of ‘what can go wrong?’
and presents attack trees for the following scenarios:

a. Unauthorised access to sensitive information
b. Denial of service
c. Evasion of platform security tools (helpful for an attacker looking to

realise one of the above goals)
d. Note: Information tampering does not have an attack tree of its own,

but threats to integrity are either covered within the above three
attack trees or called out as separate threats in Detailed Threats and
Controls

3. The Mitigating Controls and Recommendations section answers the
following questions:

a. ‘What can we do about the things that can go wrong?’
b. ‘Are we doing a good job?’

It consolidates the results of the threat model and mitigating control
derivations into a set of best practice guidelines.

This report was created by ControlPlane through sponsorship of the eBPF
Foundation. It does not express the opinions of the eBPF Steering Committee
(BSC).

© controlplane 2024 5



Background
eBPF is a technology that allows pre-analysed and validated programs to be run
in the Linux kernel or other privileged execution contexts. It is used to safely and
efficiently extend the capabilities of the kernel without requiring a change to
kernel source code, or loading kernel modules. The name “eBPF” was originally an
initialism, but as its usage and capabilities have expanded it is now a standalone
term.

eBPF enables tools to leverage low-level kernel access within security guardrails.
Its safety comes from the eBPF verifier (explained in eBPF Technical Overview),
Just-In-Time (JIT) compiler, and some automatic mitigations, and it also enables
more granular permission grants via capabilities. Due to these guardrails, eBPF is
proposed as the first option to consider over kernel modules or patches.

Creating eBPF code that conforms to the verifier can make some tasks more
difficult, but its Turing completeness enables its many use cases which are more
tightly secured than equivalent direct kernel manipulation. Many large
companies utilise eBPF as the safest method to write kernel-level tooling and
produce highly performant solutions: common use cases include performance
monitoring, observability, tracing, networking, and security detection and
enforcement.

eBPF Technical Overview
This subsection presents a brief technical overview of eBPF, using material from
ebpf.io and our other references.

eBPF programs are generally written in pseudo-C code or Rust and compiled into
eBPF bytecode which can then be run within the Linux Kernel. eBPF programs1

are loaded into the kernel by a userspace program using the bpf() syscall,
commonly using a library such as libbpf (C) or ebpf-go (Go). When a program is
loaded, the bpf() syscall returns a file descriptor to the program being loaded.. The
program subsequently remains in memory until the file descriptor is closed. If a
process can obtain a file descriptor to an eBPF object, future operations on that
object are allowed.

eBPF programs are event-driven, and are run when the kernel or an application
passes a certain hook point. Pre-defined hooks include system calls, function
entry/exit, kernel tracepoints, network events, and several others. If a predefined
hook does not exist for a particular requirement, it is possible to create a kernel
probe (kprobe) or user probe (uprobe) to attach eBPF programs almost anywhere
in kernel or user applications.

1 Writing eBPF bytecode by hand is of a similar difficulty to hand-writing Assembly.

© controlplane 2024 6

https://isovalent.com/blog/post/ebpf-for-anything/
https://ebpf.io/case-studies/
https://ebpf.io/case-studies/
https://ebpf.io/what-is-ebpf/


Before the program can be attached to the appropriate hook, the program must
pass through the eBPF verifier, which confirms that the program is safe to run, for
example by checking that:

● The process loading the eBPF program holds the required capabilities
(privileges)

○ Unless unprivileged eBPF is enabled, only privileged processes can
load eBPF programs

● The program does not crash or otherwise harm the system
● The program always runs to completion (i.e. it does not sit in an infinite

loop)

Once a program is verified, it is Just-in-Time (JIT) compiled to translate the eBPF
bytecode into machine-specific instructions. eBPF bytecode can be interpreted or
JIT compiled, but JIT compilation is preferential for superior performance, and to
avoid certain Spectre-related vulnerabilities . The vast majority of modern2

architectures support JIT, but there may be less common platforms which do not
support it.

eBPF programs are restricted to a fixed set of memory regions with a fixed-size
stack and a context that is dependent on the “program type”. They also use
statically sized key/value dictionaries called maps to store and retrieve data.

eBPF programs can make function calls into helper functions, a well-known and
stable API offered by the kernel. The next section highlights certain helper
functions that may have security side-effects and thus be of interest to attackers.

2 Mitigations automatically applied vary depending on architecture and capabilities used.

© controlplane 2024 7

https://ebpf.io/what-is-ebpf/#helper-calls


eBPF Helper Functions of Interest to Threat Actors
If a threat actor can load and run eBPF code, the following helper functions have3

particular security relevance:

1. bpf_probe_write_user
2. bpf_probe_read_user
3. bpf_override_return
4. bpf_send_signal
5. bpf_map_get_fd_by_id

Inspecting the relevant kernel headers and relevant lines in the source code
reveals the minimum Linux capabilities (KC-cap-bpf) required by the userspace
process which loads an eBPF program using each helper function:

Helper Function Purpose Required Minimum
Capabilities

bpf_probe_write_user Write to any process’s
user space memory

CAP_SYS_ADMIN (&
kernel lockdown )4

bpf_probe_read_user Read any process’s user
space memory

CAP_BPF &
CAP_PERFMON

bpf_override_return Alter return code of a
kernel function

CAP_SYS_ADMIN

bpf_send_signal Send a signal to kill any
process

CAP_SYS_ADMIN

Additionally, the libbpf function bpf_map_get_fd_by_id, which can obtain eBPF
programs’ eBPF maps fd (and as a libbpf function, runs in userspace instead of
eBPF context), requires CAP_SYS_ADMIN.

CAP_BPF will let a process load its own eBPF programs and maps. To load some
specific program types, it must be paired with another capability. For example,
CAP_NET_ADMIN for loading network programs, and CAP_PERFMON for tracing
programs and some networking use cases. CAP_SYS_ADMIN allows any helper
function to be called.

4 This helper is also blocked by the Kernel Lockdown feature in “integrity” mode or above.
For additional details see the recommendations in Detailed Threats and Controls.

3 For the full list of eBPF helper functions consider reading the relevant manual page
bpf-helpers(7), and consult this paper.

© controlplane 2024 8

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/include/uapi/linux/capability.h?h=v6.10#n383
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/kernel/bpf/helpers.c?h=v6.10#n2004
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://www.usenix.org/system/files/usenixsecurity23-he.pdf


Data Flow Diagrams (DFDs)

High-Level eBPF DFD
This diagram from ebpf.io shows the creation, verification, loading, and running of
an eBPF program, along with communication with userspace processes via maps:

DFDs for different eBPF use cases

Performance monitoring, observability and tracing
Given the low-level insights that can be gained by running custom code in the
kernel, eBPF provides an excellent foundation for observability. For examples of
how eBPF can be used for performance observability and tracing, see the blog
Next-Generation Observability with eBPF.

© controlplane 2024 9

https://ebpf.io
https://isovalent.com/blog/post/next-generation-observability-with-ebpf/#h-using-ebpf-for-performance-observability


Networking
eBPF enables high-performance packet filtering and processing at various points
within the networking stack. eBPF programs attached to hooks in the kernel can
inspect, modify, or drop network packets without the need for user-space
intervention. This avoidance of mode switching reduces packet latency and
improves throughput.

XDP (eXpress Data Path) provides a framework for eBPF programs to be run as
soon as the network driver receives a packet on ingress. The kernel’s Traffic
Control (TC & TCX) layer can be used in the networking data path at both ingress
and egress and has access to the Socket Buffer structure (sk_buff). Additionally TC
hooks into generic layers and does not require driver support, which makes it
more flexible.

The TC hook is executed after the packet has been processed by the XDP hook if it
was attached to the interface.

© controlplane 2024 10

https://docs.kernel.org/6.10/networking/skbuff.html
https://docs.cilium.io/en/v1.16/bpf/progtypes/#tc-traffic-control


Security
eBPF security tools can combine the deep observability features of performance
monitoring and tracing tooling, while additionally making contextualised
handling decisions for anomalous events that may correspond to a threat being
realised. Policies can be defined to detect classes of events, and in some cases
prevent their ongoing execution. Prevention can be coarse (killing a suspicious
process) or fine-grained (denying an activity). For finer-grained preventions,
fmod_ret can be used to reject syscalls by altering their return values, and some
network program types also enable accept/reject semantics.

Time-of-Check Time-of-Use (TOCTOU) issues can arise in security tooling. The goal
is to analyse the actions that the system will perform accurately. However, if the
security tool reads values from user-space memory and then those values are
changed before the kernel acts on them, what is “used” by the kernel could differ
from what you “checked” in user-space. TOCTOU races can be prevented by
ensuring that the security tooling observes values after they have been
transferred to kernel memory. The two main ways to do this are LSM (Linux
Security Module) eBPF programs and directly hooking kernel internal functions
via kprobe/kretprobe/fentry/fexit

© controlplane 2024 11



Threat Model

Threat Model Scope
To derive the most general set of end-user recommendations, we will make the
following assumptions:

1. User space workloads run in a multi-tenant platform, with different tenants’
workloads potentially running on the same Linux host

2. Workloads running on the shared platform are orchestrated by an
unspecified external mechanism

3. eBPF programs are run by a central ‘platform team’, for any combination of
the following three reasons:

a. Observability and tracing for all workloads running on the shared
platform

b. Highly performant networking to route traffic to and from tenants’
workloads, or to block any traffic that doesn’t have a valid business
justification

c. Security tooling to detect and optionally block specified events such
as Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS)

We do not make any assumptions about the security context of tenant workloads.
Where workloads run with elevated privileges, malicious tenants could attempt to
run eBPF programs to bypass security controls.

© controlplane 2024 12



Attack trees
The following attack trees have been created as examples without any inherent
controls in place. As such, without additional exploitable vulnerabilities, some of
the theoretical attack paths will not be possible due to controls such as the
verifier.

It is important to note that the eBPF runtime itself runs in the kernel, so
vulnerabilities in controls such as the verifier may open these attack paths. Many
of these threats are equivalent to those outside of the eBPF ecosystem.

Once the key attack scenarios have been explored through the attack trees, the
threats are consolidated and summarised in Detailed Threats and Controls. The
attack trees cover platform confidentiality and integrity, availability, and evading
security tooling.

The initial compromise could come from a supply chain vulnerability, a Remote
Code Execution (RCE) attack, or an internal threat, such as an employee.

The format of the attack trees is a top-to-bottom flow. It works from the “attacker
goal” downwards, through the requirements and steps to achieve it. Leaf nodes
are grey, logical AND nodes are blue, and logical OR nodes are green.

Confidentiality and Integrity
This threat model considers privileged, platform-level workloads running eBPF
programs. If an external attacker can compromise a user-space agent which loads
eBPF code, their goal may be to read sensitive data processed by one of the
platform tenants. An external attacker may then leverage such a weakness in a
user-space agent which loads eBPF code to read sensitive data processed by one5

of the platform tenants.

Provided the user-space agent’s process has the correct privileges, it can attach a
Tracepoint eBPF program that observes read syscalls (or utilise kprobe/fentry) and
then use the bpf_probe_read helper function (i.e. at least with CAP_BPF and
CAP_PERFMON capabilities added) to read sensitive data.

5 Note that this also applies to any other privileged process which can load eBPF.
According to the threat model scope we are considering user-space agents with these
privileges, which we call ‘platform-level eBPF tools’.

© controlplane 2024 13



Given access to that process, an external threat actor would then require an
egress route available to the user-space agent, to exfiltrate the collected data.

If no egress route is available, an external threat actor cannot carry out this attack.
Instead, it may be undertaken by internal threat actors (e.g. privileged platform
administrators) or privileged tenants permitted to run some workloads at the
same level as the platform team.

A similar tree could be drawn if the attacker’s goal were to compromise the
integrity of data processed by a tenant workload. In this case, our eBPF program
would need to use the bpf_probe_write_user helper function. From eBPF Helper
Functions of Interest to Threat Actors, we can see that this would require the
CAP_SYS_ADMIN capability (whereas bpf_probe_read can be used with CAP_BPF6

plus CAP_PERFMON). The use of this helper has been included as an independent
threat in Detailed Threats and Controls.

Availability
As with any code executed in the kernel, bugs or maliciously written eBPF code
may crash nodes that run tenant workloads. In Mitigating Controls, we investigate
how the eBPF verifier can mitigate these threats. At this stage of the threat model
we are simply enumerating as many types of inherent threat as possible.

Similar to the confidentiality tree, the offensive eBPF helpers which could be used
to carry out a denial of service (DoS) attack depend on the available capabilities.
For example, a security tool acting as an IPS would need to kill processes
matching indicators of compromise in a policy. To do this for legitimate purposes,

6 And additionally, a kernel prior to the addition of lockdownmode, or inactive lockdown. If
lockdown is enabled in “integrity” mode or above this helper cannot be used and this
threat is mitigated (see KC-lockdown).

© controlplane 2024 14



it would need to run with CAP_SYS_ADMIN (or as root), as CAP_PERFMON does
not permit the use of bpf_send_signal (as seen in the kernel source code). If such
a tool were to be compromised, arbitrary processes could be killed by sending a
SIGKILL, causing a denial of service to platform tenants.

If an eBPF networking tool were to be compromised (or any process with at least
the CAP_BPF and CAP_NET_ADMIN capabilities added), a denial of service attack
could be carried out by preventing traffic from reaching its intended destination.

Finally, a malicious eBPF program could disrupt a legitimate platform eBPF tool
via map tampering. The malicious program could access a map created by a
legitimate platform eBPF tool if it could use the bpf_map_get_fd_by_id libbpf
function in combination with CAP_SYS_ADMIN. By altering the data in these
maps, a denial of service attack could be carried out, for example, by tampering
with a tail call map facilitating a jump to another eBPF function.

7

Evade Security Tooling
eBPF’s great power enables possible evasion of traditional security tooling, or
attempts to execute attacks in a manner not identified by an eBPF security tool.

In the first instance, if an attacker has already gained root access to a node, eBPF
could be used to build stealthy rootkit functionality. For example, the
bpf_override_return helper function can alter data returned from the kernel, so
malicious files and processes could potentially be hidden from user-space apps.

7 For the leaves of the eBPF malware branch see the Confidentiality and Integrity attack
tree above.

© controlplane 2024 15

https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/kernel/bpf/helpers.c?h=v6.10#n2004


eBPF could also be used to hide command and control (C2) traffic from clients on
the host by redirecting traffic to an attacker-controlled server using TC hooks. This
attack can be detected with traditional network detection tooling outside of the
host.

Three methods for evading eBPF security tooling are explored in the below attack
tree:

● Exploiting TOCTOU issues with tools which attach to entry points of syscalls.
This may allow an attacker to modify memory contents before the kernel
copies arguments from userspace. In this case, what is ‘checked’ by the
security tool may not be what is ‘used’.

● Executing a hook order interference attack, whereby the attacker installs
one hook converting the input frommalicious to benign before the security
tool checks it and another to revert it to the malicious payload after
checking.

● Attempting to blind security tooling by creating a large amount of benign
traffic or logging. Large outputs can obscure, or even cause the loss of, data
intended for monitoring due to overflows.

© controlplane 2024 16



Mitigating Controls and
Recommendations
A full suite of mitigating controls for the threats identified in the attack trees is
included in Detailed Threats and Controls, and are summarised in this section.

After passing capability checks for loading eBPF programs, the next line of
defence when loading an eBPF program is the verifier. The verifier performs the
following checks to ensure that eBPF code is safe to run:

1. Program Analysis: The verifier performs a detailed analysis of the eBPF
bytecode to ensure that the program adheres to safety and correctness
constraints.

2. Control Flow Validation:
a. Loop Detection: checks for the presence of loops in the eBPF

program’s execution flow. eBPF programs must have a predictable
runtime, and loops can cause unpredictable execution times. The
verifier ensures the program has a bounded loop, or is loop-free.

b. Instruction Limits: ensure the program does not exceed the
maximum instruction limit (see appendix).

3. Memory Safety:
a. Bounds Checking: verifies that all memory accesses are within valid

bounds to prevent buffer overflows. This includes checking and
validating pointers.

b. Stack Safety: ensures that the stack usage is within limits and
properly managed.

4. Type Safety:
a. Register State Tracking: tracks the type and value ranges of data in

registers throughout program execution to ensure type-safe
operations.

b. Function Calls: checks that calls to helper functions follow the
correct calling conventions, and that the arguments passed are of
the correct type and within valid ranges.

5. No Undefined Behaviour:
a. Instruction Semantics: ensures instructions don’t perform illegal

operations such as division by zero or accessing uninitialised
memory.

b. State Transitions: validates that each state transition (changes in
register values, memory accesses, etc.) leads to a defined state.

6. Resource Constraints:
a. Execution Time: ensures that the program will terminate in a finite

amount of time, to avoid infinite loops or excessively long execution
times.

© controlplane 2024 17



b. Resource Access: verifies that the program accesses kernel resources
in a controlled manner, preventing resource leaks or unauthorised
access.

7. Helper Function Safety: ensures that the program only uses allowed helper
functions and that these functions are used correctly.

The verifier also checks that the process now attaching the eBPF program holds
the required capabilities for both this eBPF program type and the points it is8

attaching to. Root privileges or the CAP_SYS_ADMIN capability are not always
necessary to run an eBPF program, and as such, it is important to understand
which capabilities are required and to apply the principle of least privilege.

For example, an eBPF networking tool may be able to be run with CAP_BPF and
CAP_NET_ADMIN, and a tracing tool may work with CAP_BPF and
CAP_PERFMON. However, a security tool (acting in prevention mode) may need to
use helper functions such as bpf_send_signal, and hence require root or
CAP_SYS_ADMIN.

Given the privileged nature of eBPF tools for networking, observability and
security, separation of duties and access control should be considered the
purview of system administrators. In a multi-tenant scenario, it is recommended
that a central platform team is responsible for the configuration and maintenance
of these tools. For this reason, disabling unprivileged eBPF is advised and
commonly the default in Linux distributions.

As with any software, regardless of the privileges it needs to run, software supply
chain security is paramount. If an attacker could compromise the source code,
build process or release artefacts of any application that runs with elevated
privileges (including platform-level eBPF tools), any threats explored in the Threat
Model could be realised. A set of supply chain security best practices can be found
in the CNCF Software Supply Chain Best Practices paper.

If closed-source eBPF software is used, some due diligence and audit activities
may not be possible (e.g. using OSSF Scorecard to see whether an open source
project complies with best practices). In this case, using a complementary open
source tool may be an option to detect or block suspicious activity.

Regardless of whether an eBPF tool is open or closed source, there will always be
the question of “who watches the watcher?”. Although some eBPF tools act as
security controls themselves, it is recommended that organisations maintain
technical threat models which consider the case that these tools themselves are
compromised. Devising controls for these threats will depend on the
organisation’s threat environment and risk appetite, but may involve using
complementary eBPF tools to detect specific classes of attack.

8 A list of eBPF program types is in the kernel documentation. Program types have been
added over time, and as such may not exist in older kernels.

© controlplane 2024 18

https://github.com/cncf/tag-security/blob/main/supply-chain-security/supply-chain-security-paper/CNCF_SSCP_v1.pdf
https://github.com/ossf/scorecard
https://docs.kernel.org/6.10/bpf/libbpf/program_types.html


It is recommended that this whitepaper is used alongside the materials it
references to inform a bespoke threat model for your organisation’s systems,
accounting for the specifics of your system’s eBPF workload orchestration and
security. Once you've created a list of threats, determine the monitoring use cases
to detect these threats, and based on those use cases choose the best tool to
detect those events.

As an example, if you are concerned about the threat of an eBPF networking
program using TC hooks to hide C2 traffic, it can help to use an external source of
network monitoring data, as the true destination of packets will not be hidden for
external monitoring tools.

© controlplane 2024 19



Detailed Threats and Controls
This table expands upon threats from the attack trees. The “Inherent eBPF
controls” column outlines in-built protections, and “Recommendations” covers
controls to implement. Threats are unordered, and controls or recommendations
may be common to multiple threats.

In general, it is recommended to create a threat model, derive monitoring use
cases for bad things that could happen, monitor for dangerous events and alert
on them. An eBPF tool could be considered to perform detections.

ID Threat Inherent eBPF controls Recommendations

1 Malicious eBPF
program uses
bpf_probe_write_
user helper
function to write
to memory of
other process

When an eBPF program
using this helper is
attached, a warning
including PID and
process name is printed
to kernel logs.

Apply the principle of least privilege.
Rather than give tools the
CAP_SYS_ADMIN capability, where
possible use CAP_BPF, and additional
capabilities such as CAP_PERFMON or
CAP_NET_ADMIN as required
(KC-cap-bpf).

Consider the kernel lockdown feature
(KC-lockdown) at “integrity” mode
which (among other things) blocks this
helper. In most Linux distributions,
lockdown in “integrity” mode is enabled
by default.

2 Malicious eBPF
program tampers
with arbitrary
kernel memory

The verifier checks that
the program is not trying
to access memory
outside the stack, or that
it is not trying to access
memory that is not
mapped.

Can BPF Overwrite
Arbitrary Kernel
Memory? -
kernel.org/doc

3 Denial of service
via malformed
eBPF program
exhausting

The verifier checks for
unbounded loops. Every
instruction it verifies is
counted and the

Consider applying a cgroup to limit the
resources available to the eBPF loading
process, as eBPF programs inherit the
cgroup of their parent

© controlplane 2024 20

https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html#q-can-bpf-overwrite-arbitrary-kernel-memory
https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html#q-can-bpf-overwrite-arbitrary-kernel-memory
https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html#q-can-bpf-overwrite-arbitrary-kernel-memory
https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html#q-can-bpf-overwrite-arbitrary-kernel-memory


resources via
unbounded loop

program is rejected if the
number reaches a limit.
As of kernel 5.2 it’s one
million instructions
(KC-limit-increase)
(which can be extended
with tail calls) or 4096 for
unprivileged eBPF. As
the verifier improves,
limits may be further
relaxed. You can check
for changes here or
review the current
source code.

(KC-ebpf-cgroup).

Resource limits - Isovalent eBPF Docs -
dylanreimerink.nl

4 Denial of Service
via malformed
eBPF program
causing kernel
panic

Verifier checks include:

● Pointer bounds
checking

● Verifying that the
stack’s reads are
preceded by stack
writes

● Preventing the
use of unbounded
loops

● Register value
tracking

● Branch pruning

eBPF programs use a
predefined set of helper
functions.

Maintain good hygiene in updating
kernel versions to the latest provided by
the vendor to fix any applicable kernel
verifier bugs. If you encounter a crash
not resolved upstream, engage with the
kernel community to get it resolved and
backported to stable releases.

5 Malicious eBPF
program disrupts
platform
networking

Maintain awareness that every
platform-level eBPF program launched
with CAP_BPF and CAP_NET_ADMIN, or
CAP_SYS_ADMIN can load eBPF
programs to disrupt platform
networking.

6 Malicious eBPF
program tampers
with map used
by other eBPF
program, causing

If a process can obtain a
file descriptor to an eBPF
object then it is assumed
that future operations on
that object, through the

Apply the principle of least privilege.
Rather than give tools the
CAP_SYS_ADMIN capability, where
possible use CAP_BPF, and additional
capabilities such as CAP_PERFMON or

© controlplane 2024 21

https://docs.kernel.org/bpf/bpf_design_QA.html#q-what-are-the-verifier-limits
https://ebpf-docs.dylanreimerink.nl/linux/concepts/resource-limit/
https://ebpf-docs.dylanreimerink.nl/linux/concepts/resource-limit/


a denial of
service

descriptor, are allowed.
However, the
bpf_map_get_fd_by_id
libbpf function requires
root or CAP_SYS_ADMIN
to be used.

CAP_NET_ADMIN as required.

7 Denial of Service
attack by
malicious eBPF
program
terminating
processes using
bpf_send_signal
helper function

With the high levels of privilege needed
to run them, eBPF tools should be
administered by a dedicated platform
team in the case of a multi-tenant
environment.

Some eBPF tools (e.g. Tetragon) allow
policies to be written which allow
preventative action (e.g. kill suspect
processes) to be taken when potentially
dangerous events take place. It is
recommended to run tools in audit
mode first, to understand the impact of
running a policy in prevention mode.

8 Malicious
platform-level
eBPF tool
exfiltrates data

Implement egress controls limiting
programs which load eBPF code to only
communicate with approved external
services.

9 eBPF malware
via supply chain
attack (e.g.
poisoned
container
registry)

Due to the high level of privilege
needed to run the types of eBPF tools
considered in this report, establishing
explicit trust relationships with the
project(s) used is essential. Tools exist to
assess open source projects for
indicators of good maintenance and
following security best practices, for
example OSSF Scorecard.

If deploying eBPF tools via containers,
you can enforce image signing.
Projects and Vendors following SLSA
guidance and delivering provenance
and a Software Bill of Materials (SBOM)
provide additional confidence as to the
artefact’s origin.

10 RCE attack via an Implement a vulnerability management

© controlplane 2024 22

https://github.com/ossf/scorecard


exploitable
vulnerability in
platform
userspace
workload that
loads eBPF
program

process whereby CVE scans are
performed on public artefacts before
they are ingested. Information from
vulnerability scans will include CVEs and
their associated CVSS, but also can be
supplemented with information about
the exploitability (e.g. KEV or EPSS
information) and software scorecards
(e.g. OSSF Scorecard).

Minimise the API surface in platform
userspace programs that load eBPF
programs, so that in the event of an RCE
attack eBPF access is not readily
available.

Furthermore, privileged eBPF loaders
should use mechanisms to authenticate
the origin of BPF programs (e.g. with
signing) to avoid being tricked into
loading malicious programs.

These loaders should also be hardened
against memory corruption issues
which can allow an attacker to gain
control (read / write / execute) over
privileged code.

11 Userspace
program receives
data via eBPF
map and sends
information
externally to be
accessed by an
external attacker

Implement egress controls limiting
programs which load eBPF code to only
communicate with approved external
services.

12 Malicious
platform admin
or tenant with
the ability to run
eBPF reads
sensitive data
from co-tenants’
opened files

Administrative access should follow
standard break-glass best practices of
multi-party authorisation, and admin
access should be limited to vetted
programs (such as signed BPF
programs and tooling scripts).

© controlplane 2024 23



13 Enhance Linux
rootkits by
concealing
malicious
behaviours (post
exploitation), e.g.
modifying
syscalls
arguments or
return code

bpf_override_return is
available if the kernel
was compiled with the
CONFIG_BPF_KPROBE_
OVERRIDE configuration
option, and operates on
functions tagged with
ALLOW_ERROR_INJECTI
ON in the kernel code,
which is enabled by
default in many distros.
fmod_ret programs can
also perform these
actions for syscalls and
functions prefaced with
“security_”.

This helper helper is only
available for the
architectures having the
CONFIG_FUNCTION_ERR
OR_INJECTION option.
As of this writing, x86,
ARM64, s390, powerpc,
and csky architectures
support this feature.
(Helper Function
'bpf_override_return' -
Isovalent eBPF Docs -
dylanreimerink.nl).

Consider complimentary eBPF tooling
to detect potentially malicious eBPF
activity.

14 Exploit TOCTOU
issue to evade
security tooling,
which hooks on
the entry point to
syscalls

Maintain awareness of potential
TOCTOU issues when using a security
tool which hooks on entry points to
syscalls. Leverage bpf-lsm, or
kprobe/kretprobe/fentry/fexit, to operate
on kernel instead of user-space memory
(KC-bpf-lsm).

15 Overwhelm log
buffers with
noise to blind
userspace agents

Using separate ring buffers for various
classes of events. e.g. separate ring
buffers for on-host detection events and
general audit logs. Even within audit
events, one could consider using
separate logging buffers for subclasses
(e.g. process, network, module loads

© controlplane 2024 24

https://ebpf-docs.dylanreimerink.nl/linux/helper-function/bpf_override_return/
https://ebpf-docs.dylanreimerink.nl/linux/helper-function/bpf_override_return/
https://ebpf-docs.dylanreimerink.nl/linux/helper-function/bpf_override_return/
https://ebpf-docs.dylanreimerink.nl/linux/helper-function/bpf_override_return/


events).

16 Execute hook
order
interference
attack to evade
security tool
which hooks on
KProbe or
Tracepoint

Be aware that with monitoring or
security tooling the order actions are
processed could affect what is seen. In
order to accurately process actions the
system will perform, tools must check at
the last opportunity to change the
actions or ideally after the action can no
longer be changed. With LSM BPF you
can check system actions (and act upon
them) once they are unchangeable.
(KC-bpf-lsm).

17 Unprivileged
user exploits
kernel
vulnerability by
using
unprivileged
eBPF program
type (such as
BPF_PROG_TYPE
_SOCKET_FILTER,
BPF_PROG_TYPE
_CGROUP_SKB)

The mainline Linux
kernel and most
distributions disable
unprivileged eBPF
out-of-the-box
(KC-disallow-unpriv-bpf).

It is recommended that unprivileged
eBPF is disabled. In most distributions,
this is the case by default.

Since kernel 5.13
(KC-disallow-unpriv-bpf) many Linux
distributions disable unprivileged eBPF
(i.e.
/proc/sys/kernel/unprivileged_bpf
_disabled is set to 2). This is a sensible
default for most machines that allows
re-enabling unprivileged eBPF. To fully
block unprivileged eBPF (until reboot)
set the value to 1.

18 Lack of timely OS
patching leads to
an exploitable
kernel
vulnerability

Programs which are
tightly coupled with a
kernel version can delay
update adoption . eBPF9

programs can utilise
Compile-Once
Run-Everywhere
(CO-RE). This in
combination with BPF’s
stable application binary
interface (ABI) means
you can update without
changes. The one
exception is BPF helpers

Utilise eBPF programs with CO-RE and
leveraging BTF so they’re a reduced
blocker to kernel updates. eBPF
programs compiled for your exact
kernel might not be a blocker if you or
your distribution provider can recompile
them.

Dedicate time to maintaining
up-to-date eBPF programs for target
platforms, through ongoing testing and
integration into newer kernels as they
are released. Leverage CO-RE and BTF
to more easily adapt to a range of target
platforms.

9 Kernel CVE announcements commonly include the quote: “The Linux kernel CVE team
recommends that you update to the latest stable kernel version for this, and many other
bugfixes.”

© controlplane 2024 25



which walk kernel data
structures or call kfuncs.
BTF can help alleviate
issues on kernel updates
but it is still not a stable
ABI and no guarantees
are given and testing is
necessary.

Does BPF have a Stable
ABI? - kernel.org/doc

BPF Kernel Functions
(kfuncs) - Lifecycle
Expectations -
kernel.org/doc
BPF CO-RE reference
guide - nakryiko.com

eBPF Tutorial by
Example: Learning
CO-RE eBPF -
eunomia.dev

Failures may still occur in production,
despite integration testing especially
when there are a lot of kernels to test.
Thus loading and functionality of BPF
programs should be monitored in
production.

Maintainers of eBPF tools leveraging
kfuncs should monitor kernel releases
for BTF changes.

19 TC is used to hide
C2 traffic

External monitoring tools or hardware
are sufficient to detect such attacks, as
once the packet has been processed by
the kernel, it is possible to see its actual
destination.

(KC-bpf-link)

eBPF Offensive Capabilities - sysdig.com

© controlplane 2024 26

https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html#q-does-bpf-have-a-stable-abi
https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html#q-does-bpf-have-a-stable-abi
https://www.kernel.org/doc/html/v6.10/bpf/kfuncs.html#kfunc-lifecycle-expectations
https://www.kernel.org/doc/html/v6.10/bpf/kfuncs.html#kfunc-lifecycle-expectations
https://www.kernel.org/doc/html/v6.10/bpf/kfuncs.html#kfunc-lifecycle-expectations
http://kernel.org/doc
https://nakryiko.com/posts/bpf-core-reference-guide/
https://nakryiko.com/posts/bpf-core-reference-guide/
https://eunomia.dev/tutorials/
https://eunomia.dev/tutorials/
https://eunomia.dev/tutorials/
https://eunomia.dev/tutorials/
https://sysdig.com/blog/ebpf-offensive-capabilities/


Conclusions
eBPF is a deeply powerful foundational technology, with many benefits for the
future of infrastructure software. By safely enabling custom, kernel-level software
without requiring kernel recompilation or reboot, it provides options for increased
security over traditional approaches due to its rigorous validation of user-supplied
code.

As kernel changes or module loading are not required, eBPF is a more stable,
observable, and predictable option in environments where module-based
approaches may have been used previously. eBPF is supported by a growing
number of tools and frameworks (e.g. bpftrace, Cilium, Falco, Hubble, Tetragon)
that make it easier to implement complex use cases and effectively tackle
sophisticated networking, observability, and security challenges.

Given its generic scope, this paper is intended to inform bespoke threat models
tailored to an organisation as it plans eBPF adoption. When replacing existing
tooling with eBPF-based tools, existing policies, controls, and profiles (such as
seccomp or LSMs) should be updated accordingly as interfaces to the kernel are
different (e.g. the BPF syscall). With this approach, the many benefits of eBPF can
be realised, while risks are captured and mitigated by defence-in-depth controls.

The elevated privileges that eBPF requires do not introduce novel vulnerabilities
beyond what superuser access could achieve; rather, eBPF provides a platform for
building additional security controls that make systems more robust. While eBPF
could simplify certain attack paths for an attacker already possessing substantial
privileges, it does not make these attack vectors feasible on its own.

eBPF’s abilities enable more precise operations, making it easier to limit the risks
associated with privileged processes and improving an organisation's security
posture. By following security best practices, such as the principles of least
privilege and separation of duties, organisations can fully leverage eBPF to
enhance security and observability.

© controlplane 2024 27



Appendix

Kernel Changes of Note
This list attempts to track kernel changes that affect the Threat Model and the
controls and recommendations in the document. It is impractical to list every
change to eBPF, but these are the most significant alterations we have identified
for the Threat Model.

As of writing kernel 4.19 is the oldest release still under mainline maintenance.
View the current maintenance policy here. Changes prior to this release are
unlikely to be noted.

Identifier Version Change

KC-disallow-unpriv-bpf 5.13 -
commit

Introduced the ability to disallow
unprivileged eBPF

KC-disallow-unpriv-bpf
(Related)

5.16 -
commit

Disallowed unprivileged eBPF by default in
the mainline kernel

KC-cap-bpf 5.8 Introduced CAP_BPF and CAP_PERFMON

KC-bpf-lsm 5.7 Introduced BPF LSM

KC-bpf-link 5.19 Introduced BPF Link (TCX order)

KC-lockdown 5.14 -
commit

Lockdown integrity mode now blocks
probe_write_user

KC-limit-increase 5.2 -
commit

Increased the complexity limit for privileged
eBPF from 131,072 to 1,000,000

KC-ebpf-cgroup 5.11 Switched from rlimit to cgroups for eBPF
memory accounting

© controlplane 2024 28

https://www.kernel.org/category/releases.html
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.13
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=08389d888287c3823f80b0216766b71e17f0aba5
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.16
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=8a03e56b253e9691c90bc52ca199323d71b96204
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.8
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.7
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.19
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.14
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=51e1bb9eeaf7868db56e58f47848e364ab4c4129
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.14
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=c04c0d2b968ac45d6ef020316808ef6c82325a82
https://cdn.kernel.org/pub/linux/kernel/v5.x/ChangeLog-5.11


References

● eBPF.io website
● eBPF Foundation website
● Shostack's 4 Question Frame for Threat Modeling - github.com
● eBPF for Anything! - isovalent.com
● Cross Container Attacks: The Bewildered eBPF on Clouds - He, Yi, et al. 2023 -

usenix.org
● Learning eBPF by Liz Rice - oreilly.com
● Introduction to CAP_BPF - mdaverde.com
● Linux 6.10 - include/uapi/linux/capability.h - git.kernel.org
● Linux 6.10 - kernel/bpf/helpers.c - git.kernel.org
● bpf-helpers(7) - Linux manual page - man7.org
● Helper functions - Isovalent eBPF Docs - dylanreimerink.nl
● bpf(2) - Linux manual page - man7.org
● Next-Generation Observability with eBPF - isovalent.com
● Linux 6.10 - struct sk_buff - docs.kernel.org
● BPF and XDP Reference Guide - Traffic Control - docs.cilium.io
● eBPF Offensive Capabilities - sysdig.com
● https://github.com/ossf/scorecard
● Linux 6.10 - eBPF Program Types - docs.kernel.org
● Program types (Linux) - Isovalent eBPF Docs - dylanreimerink.nl
● Linux 6.10 - BPF Design Q&A - kernel.org/doc
● BPF Kernel Functions (kfuncs) - kernel.org/doc
● Active Kernel Releases - kernel.org
● https://github.com/pathtofile/bad-bpf
● On Bypassing eBPF Security Monitoring - doyensec.com
● Iago Attacks: Why the System Call API is a Bad Untrusted RPC Interface -

hovav.net
● eBPF Tutorial by Example: Learning CO-RE eBPF - eunomia.dev
● An Analysis of Speculative Type Confusion Vulnerabilities in the Wild -

Kirzner, Ofek, et al. 2021 - usenix.org
● IETF RFC 9669: BPF Instruction Set Architecture (ISA) - rfc-editor.org

© controlplane 2024 29

https://ebpf.io/
https://ebpf.foundation/
https://github.com/adamshostack/4QuestionFrame
https://isovalent.com/blog/post/ebpf-for-anything/
https://www.usenix.org/system/files/usenixsecurity23-he.pdf
https://www.usenix.org/system/files/usenixsecurity23-he.pdf
https://www.oreilly.com/library/view/learning-ebpf/9781098135119/
https://mdaverde.com/posts/cap-bpf/
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/include/uapi/linux/capability.h?h=v6.10#n383
https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next.git/tree/kernel/bpf/helpers.c?h=v6.10#n2004
https://man7.org/linux/man-pages/man7/bpf-helpers.7.html
https://ebpf-docs.dylanreimerink.nl/linux/helper-function/
https://man7.org/linux/man-pages/man2/bpf.2.html
https://isovalent.com/blog/post/next-generation-observability-with-ebpf/#h-using-ebpf-for-performance-observability
https://docs.kernel.org/6.10/networking/skbuff.html
https://docs.cilium.io/en/v1.16/bpf/progtypes/#tc-traffic-control
https://sysdig.com/blog/ebpf-offensive-capabilities/
https://github.com/ossf/scorecard
https://docs.kernel.org/6.10/bpf/libbpf/program_types.html
https://ebpf-docs.dylanreimerink.nl/linux/program-type/
https://www.kernel.org/doc/html/v6.10/bpf/bpf_design_QA.html
https://www.kernel.org/doc/html/v6.10/bpf/kfuncs.html
https://www.kernel.org/releases.html
https://github.com/pathtofile/bad-bpf
https://blog.doyensec.com/2022/10/11/ebpf-bypass-security-monitoring.html
https://hovav.net/ucsd/dist/iago.pdf
https://hovav.net/ucsd/dist/iago.pdf
https://eunomia.dev/tutorials/
https://www.usenix.org/system/files/sec21-kirzner.pdf
https://www.usenix.org/system/files/sec21-kirzner.pdf
https://www.rfc-editor.org/rfc/rfc9669.html

