WeBPF

eBPF for the
Infrastructure
Platform

How Modern Applications Leverage
Kernel-Level Programmability

by Andrew Green

November 2025

Contents

Executive Summary 3
Product Categories Enhanced Using eBFF............... 4
Virtualized NetWOIKING.......oovviririreiiereeeeeeee e 4
NETWOIK SECUIILY ..t 5
RUNTIME SECUFITY cueeeeiiiireet et 5
Cloud and On-prem Observability.......cccoeveeeeeerrrrrrreene 6
FINOPS ottt bttt 7
LLM Security and Observability.......cccocoeieeeeieeeeeeeeeeeeas 7
How to Implement eBPF in Your Infrastructure.......8
OPEeN SOUICE PrOJECES ..ottt 9
Enterprise-Grade Versions of Open Source Projects................ 9
Commercial eBPF-Based Productsccccovneeenneceernnecennnene 9
Internal eBPF-Based TOOIS.....c..cocvccrnncerncereceneeeenes 10
Who Can Write eBPF-based Programs?cccoceveveeeeceenenenens 10

eBPF as the Platform of Choice for

Infrastructure Teams L
Developer Tools Will Lower the Barrier to Entry.....ccccccceeeeae 1
Providing High Fidelity Data for Al Agents......cccccceeeevernnenens 1
Al Workload Optimization.......cceerreeeninnieeerinseeerseeeenes 1
The Building Block for Infrastructure Platforms........ccccceeeee. 12

eBPF Resources for All 12

Executive Summary

Over the past ten years, the eBPF community, ecosystem, project, and
product landscapes have grown considerably. Organizations now benefit
from a wide range of tools that can help them protect and optimize their
infrastructure and applications by instrumenting the kernel. In the next ten
years we expect this trend only to accelerate. We are past the early adopters’
phase, where eBPF was reserved to hyperscalers and niche use cases.

eBPF is becoming the strategic platform of choice for infrastructure teams.

eBPF-based tools have become indispensable in today’s infra- This model eliminates the performance tax of frequent user-
structure platforms. The observed performance improve- kernel transitions and provides a secure sandbox for custom
ments, enhanced security, flexibility in instrumentation, and logic. Developers can reprogram kernel behavior dynamically,
overhead reduction represent major advancements compared to enabling rapid iteration and innovation across many areas of the
traditional security, observability, and networking applications. kernel, even some that have been unchanged for decades. This
promotes a rapid innovation cycle and the opportunity to define
This is because eBPF provides control over otherwise restricted granular and custom application logic safely.
parts of the operating system. Unlike traditional agents and

kernel modules, these programs execute directly within the In this paper, we will look at how the eBPF landscape evolved, how
operating system kernel with access to system data structures, it changed existing and redefined product categories, and how it
network packets, and kernel events. isshaping the future of infrastructure platform development.

eBPF FOR THE INFRASTRUCTURE PLATFORM

https://www.youtube.com/watch?v=eQVjXpuIRw4

Product Categories Enhanced Using eBPF

Since eBPF was merged into the Linux kernel, it has reshaped the logic happen directly in the kernel, eBPF can improve both per-
foundation of modern infrastructure. We've seen arange oftools formance and scalability of virtualized networks, realizing
and products that are either replacing legacy counterparts or performance gains at the software level that are otherwise unachie-
even defining new categories altogether. Some of these include: vable with traditional cloud and container networking constructs.

* Container networking
* Runtime security

* Network security

* Cloud observability

e LLM security

* FinOps

Compared to scaling up and scaling out when hitting capacity
constraints, eBPF addresses infrastructure scalability by
reprogramming how existing infrastructure operates. This
enables organizations to process significantly more requests
on the same hardware, be it physical or virtual.

Each new generation of infrastructure products is effectively
an eBPF application under the hood. In the sections below,
we provide examples to better illustrate how developers

are converging on the single principle that the fastest,
most programmable, and secure path is leveraging eBPF.

Virtualized Networking

There are many flavors of virtualized networking, including
software-defined networking for on-premises networking,
cloud networking for orchestrating hyperscaler networks, and
container networking for Kubernetes.

Virtualization introduced enormous flexibility into networking,
but also an invisible overhead with each layer of abstraction.
By letting packet processing, policy enforcement, and routing

SCALABILITY EXAMPLE #1

INCREASING VIRTUALIZED NETWORK
THROUGHPUT TO MATCH PHYSICAL
NETWORK THROUGHPUT

Both virtualization and containerization introduce
some overhead for managing the software-defined
functions. For example, the virtual ethernet
device (veth) acts as a tunnel between network
namespaces to create a bridge to a physical
network device in another namespace, inducing
latency and limiting throughput compared to host
networking. Container Networking Interface (CNI)
plugins attach a Kubernetes Pod to the node it's
hosted on by a veth device.

To improve network throughput to match that
of the host, organizations can replace the legacy
veth device with Netkit, which eliminates the
software abstraction overhead.

eBPF FOR THE INFRASTRUCTURE PLATFORM

https://isovalent.com/blog/post/cilium-netkit-a-new-container-networking-paradigm-for-the-ai-era/

For example, the default Linux networking available for
containers uses iptables. It configures the IP packet filter rules

of the kernel firewall, but it was never designed for highly scaled
operations of today. The sequential rule matching and stiff IP
based rules struggle with frequently changing IP addresses. eBPF
on the other hand uses efficient hash tables allowing for constant
time lookups, maintaining consistent performance even as the
number of services within a cluster increases substantially.

Another example is Katran, which uses eBPF with XDP to
achieve ultra-low latency by running a packet handling routine
immediately after a packet is received by the network interface
card (NIC) and before the kernel intercepts it, bypassing the
traditional Linux networking stack entirely.

SCALABILITY EXAMPLE #2

LOWERING PACKET FILTERING LATENCY
FOR HIGH-VOLUME TRAFFIC

XDP, an eBPF-based high-performance network data path, hooks at
the lowest level before the network stack for coarse packet filtering.
This is suitable for high-volume traffic filtering such as denial-of-
service protection. Some studies have shown that XDP can yield
four times the performance in comparison to performing a similar
task in the kernel using common packet filtering tools. Cloudflare
uses eBPF to protect against Terrabit per second scale attacks.

Network Security

Firewalls have been synonymous with on-premises network
security. In the cloud, security providers have virtualized their
firewalls appliances and deployed them as cloud-based instances.
These naturally have throughput limits and act as a chokepoint.

Instead of routing packets through external appliances, packet
inspection and filtering are done at the kernel level on each
endpoint, and are attached to network interfaces at both ingress
and egress points using the Linux traffic control subsystem. This
creates distributed firewalls and enforces microsegmentation.
eBPF-based network security offers a wide range of technical
features, including Layer 4/7 stateful filtering, reputation-based
detection, microsegmentation, IP masquerading, and NAT.

This shift means network security no longer needs to live in

a box, physical or virtual. With eBPF, it becomes an integral,
programmable layer of the operating system itself, enabling
zero-trust microsegmentation that scales as seamlessly as the
workloads it protects.

Runtime Security

Several types of solutions secure processes or applications as
they are executing, most notably being endpoint detection and
response (EDR) and the proposed next-generation extended
detection and response (XDR).

As EDR was only designed to protect endpoints, a more compre-
hensive solution, XDR, attempted to bring runtime security to clouds,
networks, and virtualized appliances. However, the agents used to
enforce security policies consume a high percentage of resources on
the hosts they run on and require continuous management. The
solutions that do not use kernel modules have their visibility and
enforcement restricted by the kernel data made available via APIs.

eBPF FOR THE INFRASTRUCTURE PLATFORM

https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ITC30-Packet-Filtering-eBPF-XDP.pdf
https://www.net.in.tum.de/fileadmin/bibtex/publications/papers/ITC30-Packet-Filtering-eBPF-XDP.pdf
https://blog.cloudflare.com/defending-the-internet-how-cloudflare-blocked-a-monumental-7-3-tbps-ddos/
https://engineering.fb.com/2018/05/22/open-source/open-sourcing-katran-a-scalable-network-load-balancer/

SCALABILITY EXAMPLE #3

LOWERING OVERHEAD ASSOCIATED WITH
RUNNING SENSORS AND AGENTS

Runtime security is often based on agents deployed on hosts

to enforce OS-level controls and visibility. However, user-space
agents have a high performance tax. eBPF dramatically reduces
observability overhead by collecting metrics, logs, and traces
directly in kernel space without expensive system calls. It can
implement efficient memory management policies, custom garbage
collection triggers, and event monitoring strategies that minimize
operational overhead. Some eBPF-based agents and sensors can
introduce as little as a 2% CPU load increase relative to baseline
levels, and near-zero memory increase.

SCALABILITY EXAMPLE #4
OBSERVABILITY AND OPTIMIZATION OF CPU CYCLES

eBPF enables continuous profiling and optimization by tracking CPU
cycles, function call frequencies, and hot code paths in real-time,
allowing developers to identify and optimize bottlenecks. eBPF
programs can also implement custom scheduling policies and load
balancing algorithms directly in the kernel, reducing context switches
and improving CPU utilization for request processing. With this
visibility, Meta observed 20% performance gains after changing a
single character in their code.

Sched_ext is a Linux kernel framework that allows developers to write,
test, and deploy custom CPU schedulers. Meta explored different
scheduling strategies like work conservation, idle CPU selection, and
soft-affinity and achieved over 5% throughput improvement on a
latency-sensitive workload by optimizing CPU selection and confining
low-priority tasks to dedicated CPU pools.

The runtime security landscape has quickly
adopted eBPF and evolved into more robust
products, where enforcement and visibility
are achieved by introducing dynamic, secure,
low-overhead, and efficient programs that
run directly in the kernel. Some examples of
categories that heavily use eBPF for runtime
security are cloud detection and response (CDR)
and application detection and response (ADR).

Cloud and On-prem
Observability

Observability has long depended on agents,
sidecars, and SDKs with each one sampling
metrics, logs, and traces from different parts of the
stack. But stitching these perspectives together has
always meant gaps, latency, and overhead. eBPF
collapses that complexity by operating from a
single vantage point in the kernel. Some of this
richer kernel-level data includes distributed traces,
service mappings, protocol-specific usage such as
HTTP, gRPC calls, SQL queries, Kafka, system calls,
network interface events, and performance data
all without modifying a single line of code.

For organizations with an on-premises footprint,
eBPF also provides hardware-level observability,
such as visibility over memory access patterns,
disk I1/0 performance, and network interface
behavior. This kernel-level visibility helps identify
hardware contention, resource misallocation, and
performance degradation across physical servers,
storage devices, and network adapters. This is

eBPF FOR THE INFRASTRUCTURE PLATFORM

https://isovalent.com/blog/post/tetragon-release-10/
https://engineering.fb.com/2025/01/21/production-engineering/strobelight-a-profiling-service-built-on-open-source-technology/
https://github.com/sched-ext/sched_ext/blob/case-studies/scx_layered.md

particularly valuable for optimizing on-premises data centers where operators
must understand the relationship between software behavior and underlying
physical hardware.

For hybrid environments, this model is particularly powerful. Whether
workloads run on-premises or across multiple clouds, eBPF delivers consistent
telemetry from the same kernel hooks, eliminating the blind spots that
arise from mixing vendor agents and hypervisor-based monitoring. The result
is a unified, event-driven view of the entire system.

FinOps

To calculate cloud costs without relying only on data exposed by hyperscalers,
eBPF probes are used to monitor system calls, payload level network traffic,
and application behavior in real-time. eBPF can help determine how cloud
services are used and tie this back to kernel events.

By observing CPU scheduling, network paths, and I/O patterns in real
time, eBPF makes invisible inefficiencies visible. This lower-level data
can also differentiate between tenants on shared services or multi tenant
environments. It can also mean that costs can be attributed to each cloud
service such as managed databases, object storage, or egress costs.

LLM Security and Observability

Protecting GenAl applications, specifically those that use LLMs, is a new
challenge for security architects. Most tools designed to address LLM security
issues have directly opted for eBPF to trace the interactions between
applications and external large language models.

By instrumenting eBPF at the network layer, these solutions monitor and log

the API calls made to these services, capturing information such as request
and response data, latency, and error rates.

eBPF FOR THE INFRASTRUCTURE PLATFORM

How to Implement eBPF in Your Infrastructure

Organizations can currently choose from a wide
range of eBPF based solutions to optimize and
secure their applications and infrastructure. The

three main options are to leverage open source IS THERE A SUITABLE
OPEN SOURCE PROJECT?

projects, adopt enterprise-grade distributions,
or develop custom eBPF programs tailored to |

their unique needs. l l l

)) YES YES, BUT NO
First they can choose from a dynamic open INSUFFICIENT
source ecosystem, which offers organizations l l l
a low-risk, low-cost opportunity to explore implement it B——— look for a
and build their eBPF footprint. Some open first to observe e G U commercial
source projects also have commercial versions, benefits solution

roject, or evaluate
often provided by the creators and maintainers prel

of the OSS tools. Finally, organizations can also
write and run their own eBPF programs if their

any enterprise
grade versions of

the product
requirements are beyond the scope of the procu

current tools, or if they have specific require-

ments around regulations and data processing. IS THERE A SUITABLE

COMMERCIAL OFFERING?
Working with the assumption that eBPF is the |

suitable solution, organizations should evaluate l l
their implementations of eBPF from low-effort,

low-cost first as follows: YES NO
evaluate cost, licensing, write your own
and displacement of eBPF programs

existing legacy tools

eBPF FOR THE INFRASTRUCTURE PLATFORM

Open Source Projects

The eBPF ecosystem has been consistently growing over the
past ten years. Organizations can now leverage a wide range of
open source tools, a survey of which you can see on ebpf.io,
and typically include use cases such as:

* Networking solutions - Load balancers, container networking
e Security tools - Runtime security, intrusion detection

* Observability platforms - Monitoring, tracing, and
profiling applications

Some of the most widely adopted projects that benefit from
community development include Cilium for networking, its
sub-project Tetragon for runtime security, and OpenTelemetry
for observability.

Cilium is one of the first open source eBPF-based projects, and
provides networking, security and observability for containerized
environments. Cilium follows the Container Networking Interface
(CNI) specification and has been specifically designed from the
ground up to bring the advantages of eBPF to Kubernetes and to
address the new scalability, security, and visibility requirements
of container workloads.

Tetragon is a sub-project of Cilium that uses eBPF for transparent
security observability combined with real-time runtime enforce-
ment. The embedded runtime enforcement layer is capable of
performing access control on kernel functions, system calls, and
at other enforcement mechanisms.

OpenTelemetry is a collection of APIs, SDKs, and tools used

to instrument, generate, collect, and export telemetry data.
The Open Telemetry eBPF-based continuous profiler offers
comprehensive, low-overhead whole-system profiling for Linux
systems. It supports a wide range of programming languages,

including native code without debug symbols, and provides deep
insights into application behavior.

Enterprise-Grade Versions
of Open Source Projects

Some technology vendors, usually the creators and maintainers
of OSS projects, also offer an enterprise-grade version of the open
source tools. These typically entail additional features,
enterprise-grade support, and graphical user interfaces.

Isovalent, now part of Cisco, are the creators of Cilium and
Tetragon. Organizations can opt for the Isovalent Enterprise
Platform as an enterprise-grade, hardened distribution of the
open source projects Cilium, Hubble, and Tetragon. Isovalent
Enterprise Networking for Kubernetes provides advanced network
policy capabilities, including DNS-aware policy, L7 policy, and
deny policy, enabling fine-grained control over network traffic
for micro-segmentation and improved security.

For those who want to use OpenTelemetry at scale and with
support, Splunk, a major contributor to the OpenTelemetry project,
offers a preconfigured and fully supported distribution of
the OpenTelemetry Collector. It supports trace instrumentation
with no code modification and comes with default configuration
and out-of-the-box support for Splunk Application Performance
Monitoring and Splunk Infrastructure Monitoring.

Commercial eBPF-Based Products

Many technology vendors across security and observability are
now using eBPF to develop more sophisticated features.
For example, Datadog's Universal Service Monitoring uses
eBPF to automatically discover, map, and monitor services and
dependencies without requiring customers to instrument any
code. Another example is Cloud Network Monitoring, which

eBPF FOR THE INFRASTRUCTURE PLATFORM

http://ebpf.io/applications/

uses eBPF to provide detailed but lightweight visibility into
the network traffic. Similarly, CrowdStrike’s newly announced
Runtime Cloud Data Protection uses eBPF to detect and block
unauthorized data movements in real time.

Internal eBPF-Based Tools

Some organizations, especially hyperscalers, are developing
in-house eBPF-based tools to address use cases specific to their
infrastructure. Meta, for example, developed an eBPF-based
profiling orchestrator that collects observability data out-of-
process, including CPU time spent in function calls and execution
paths, call stacks for native and non-native languages, off-CPU
time and service request latency analysis, and Al/GPU profiling
and memory tracking.

The tool provides low-overhead data collection, avoiding additional
instrumentation inside binaries and maintaining efficient
performance. Following the deployment, Meta was able to achieve
a20% reduction in CPU cycles, equating to a 10-20% reduction
in the number of required servers for Meta's top services.

Netflix has also developed a command-line tool designed to
streamline the performance optimization and monitoring of
eBPF programs. Netflix's eBPF footprint continuously increases,
so they have created bpftop to apply the same rigor to these
applications as with the rest of the tech stack. bpftop provides a
dynamic real-time view of running eBPF programs. It displays the
average execution runtime, events per second, and estimated
total CPU % for each program.

Who Can Write eBPF-based Programs?

Anyone can develop their proprietary or internal eBPF programs.
Even though the eBPF open source community and the compre-
hensive landscape of commercial products cover a wide range
use cases today, organizations may choose to write their own
programs for custom logic or infrastructure-specific use cases.

Writing eBPF-based programs has some prerequisites, including:

* Developers and Skills: developers need knowledge in C
programming, Linux kernel internals, and system-level
programming. They need understanding of kernel data
structures, and system call interfaces. There is also a
learning curve associated with eBPF itself, such as learning
about helper functions, memory access patterns that satisfy
the verifier's safety checks, and debugging techniques for
kernel-space code.

* Tech stack prerequisites: writing eBPF needs modern
Linux environments with newer kernel version for optimal
eBPF support, along with LLVM/Clang compiler toolchains,
and development libraries. For compatibility across kernel
versions the kernel must support BPF Type Format for
compile once-run everywhere (CO-RE). Arange of infrastructure
projects on ebpf.io can help organizations in their efforts
to write their own eBPF programs, including CO-RE eBPF
libraries and frameworks, development tools, compilers,
debuggers, and development environments for eBPF

Given the right use cases and ability to develop and manage

the tools in-house, eBPF can be a very strong advantage for
managing infrastructure at scale.

eBPF FOR THE INFRASTRUCTURE PLATFORM

10

https://engineering.fb.com/2025/01/21/production-engineering/strobelight-a-profiling-service-built-on-open-source-technology/
https://engineering.fb.com/2025/01/21/production-engineering/strobelight-a-profiling-service-built-on-open-source-technology/
https://github.com/Netflix/bpftop
https://github.com/llvm/llvm-project/
https://ebpf.io/infrastructure/

eBPF as the Platform of Choice
for Infrastructure Teams

As eBPF adoption increases and today's use-case specific
tools mature into more comprehensive platforms, eBPF will
increasingly become the infrastructure building block of
choice across hyperscalers, cloud native organizations, service
providers, and even SMBs.

Developer Tools Will Lower
the Barrier to Entry

Historically, eBPF development required deep knowledge of C,
kernel internals, and system-level programming. Today, with a
growing ecosystem of tools and frameworks and more specialized
tools that abstract some of the lower-level complexities associated
with kernel programming is making kernel-level programmability
accessible to a broader audience. These include:

* New developer-friendly SDKs with frameworks in additional
languages like Python, Go, and Rust, make it easier to
interact with kernel data structures and events without deep
C expertise.

* |IDE integrations and debugging tools, such as code
completion extensions that offer VS Code autocomplete
functionality for common eBPF patterns.

* Standardized APIs such as memory monitoring libraries,
event handling, and process monitoring REST services.

* Testing frameworks, such as memory profiling test suites for
reproducible out-of-memory scenarios with automated test
binaries for validation.

Providing High Fidelity Data for Al Agents

To help with inference, large language models require semantically
meaningful data. By collecting kernel-level telemetry covering
system calls, network activity, resource utilization, and application
behavior, eBPF enables organizations to create a unified, interpre-
table dataset for Al agents. This approach ensures that LLMs
and other Al systems can access reliable, real-time metrics,
enabling better inference, monitoring, decision-making, and
adaptation to changing workload requirements.

Al Workload Optimization

Large-scale Al workloads expose every inefficiency in compute,
networking, and storage. With considerations such as ten thousand
node clusters, GPU synchronicity, and elephant flows, every
component has compounding effects, and any marginal gains
can translate into considerable savings across vast datasets.
eBPF's ability to optimize CPU process scheduling, lower network
latencies, and provide deep kernel visibility becomes essential
for minimizing training times and maximizing resource utilization.

eBPF FOR THE INFRASTRUCTURE PLATFORM

1

The Building Block for
Infrastructure Platforms

The eBPF ecosystem began with single purpose
tools and programs designed to solve specific
problems at hyperscale companies. The lessons
learned from their early experimentation on kernel
programmability have gone on to shape the founda-
tions that the ecosystem rests upon. These building
blocks have become the core of the projects and
products that leverage eBPF and represent the
next generation of infrastructure platforms.
They can be combined, extended, and reused to
create modular, extensible platforms capable of
adapting in real time to the demands of cloud native,
hybrid, and multi-cloud environments.

We can look at the evolution of Cilium as an example
of how an eBPF project can become a platform.
Cilium was initially created as an IPv6-only container
networking project. Today, the project seamlessly
connects workloads and infrastructure across
Kubernetes, cloud, data centers, and on-premises
deployments. In addition, with the insight that eBPF
offers, it also offers network observability and
runtime security.

This trajectory is expected from a wider range

of projects and products. Networking, security,
observability, and even how the kernel itself
functions are all interrelated thus the building blocks
used for one, can also carry over into the next
category. Consumers of eBPF based products
should think about buying into an eBPF-based
platform rather than looking at individual tools.

eBPF
Resources
for All

For those who want to know more about
eBPF, there are plenty of resources for
all learning styles, such as for those who:

e Learn by doing - a wide range of
well-documented open source
projects are available here

e Learn through formal pathways -
here are a wide range of
interactive labs.

* Learn by reading - Comprehensive
O'Reilly books such as Learning
eBPF and Security Observability
with eBPF

e Learn from others’ experience -
eBPF case studies published by the
eBPF Foundation

* Learn by watching - the eBPF
documentary, Unlocking the Kernel

eBPF FOR THE INFRASTRUCTURE PLATFORM

https://ebpf.io/applications/
https://ebpf.io/labs/
https://ebpf.io/labs/
https://isovalent.com/books/learning-ebpf/
https://isovalent.com/books/learning-ebpf/
https://isovalent.com/books/ebpf-security/
https://isovalent.com/books/ebpf-security/
https://ebpf.foundation/ebpf-resources/
https://ebpf.foundation/watch-the-ebpf-documentary-now/
https://ebpf.foundation/watch-the-ebpf-documentary-now/

W eBPF

FOUNDATION

The eBPF Foundation brings together a cross-platform community of eBPF-related projects from across
the open source ecosystem in an independent forum. The foundation provides a forum to collaborate on
a common technical vision, vocabulary, security best practices, and general roadmap, to be applied within
separate workstreams, for example Kubernetes, operating system kernels, and enterprise communities.

(wNin|

About the Author

Andrew Green is an enterprise IT research analyst and writer covering security,
networking, and infrastructure. Lately, he’s been deciphering the Al market

and its impact on enterprise products. Andrew has been a GigaOm analyst

since 2020. He also works with technology vendors to produce technical content,
competitive analysis, and market landscape assessments, and shares independent

and non-sponsored content on Substack and LinkedIn.

@ ®

Copyright © 2025 eBPF Foundation

This report is licensed under the Creative Commons
Attribution 4.0 International Public License.

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://www.linkedin.com/company/ebpf-foundation/
https://github.com/ebpffoundation

	_ggmiwyp8g6jr
	_btb731of2lu0
	_c1hrotk682nx
	_79avm0j1530j
	_23eoi4n6fzks
	_ntim6apmeara
	_7mjgti1mbthx
	_yn3p338t50ql
	Executive Summary
	Product Categories Enhanced Using eBPF
	Virtualized Networking
	Network Security
	Runtime Security
	Cloud and On-prem Observability
	FinOps
	LLM Security and Observability

	How to Implement eBPF in Your Infrastructure
	Open Source Projects
	Enterprise-Grade Versions of Open Source Projects
	Commercial eBPF-Based Products
	Internal eBPF-Based Tools
	Who Can Write eBPF-based Programs?

	eBPF as the Platform of Choice for Infrastructure Teams
	Developer Tools Will Lower the Barrier to Entry
	Providing High Fidelity Data for AI Agents
	AI Workload Optimization
	The Building Block for Infrastructure Platforms

	eBPF Resources for All

